search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
38


August / September 2019


ADVERTORIAL


Development of a novel combined IEX-RP chromatographic process for the purification of bivalirudin


By Alessandra Basso, Purolite Ltd, UK , Benjamin D. Summers*, Purolite Ltd, UK, Christopher Bresner, Purolite Ltd, UK, Simona Serban, Purolite Ltd, UK * Corresponding author email benjamin.summers@purolite.com


A novel coupled ion exchange and reverse phase chromatographic process was investigated in the purification of bivalirudin from a semi-crude mixture using Purolite Chromalite®


resins. The highly hydrophobic backbone of the ion exchange resin Chromalite® PCG1200FS contributes to the


purification by means of a pseudo-mixed mode purification. The peptide bivalirudin was purified from an initial 80-85 % sample to >99 % purity. The process also shows excellent recovery of the peptide samples, with >99 % yield obtained.


Introduction


Peptides represent a highly valuable section of the pharmaceutical market, making up 13% of newly FDA-approved drugs in 2017 [1]. However, the highly regulated nature [2] of pharmaceuticals requires the careful and thorough purification of these therapeutic agents. Additionally, as these drugs are not orally bioavailable [3], they must be directly injected - again mandating a highly pure compound. The biological aspect of peptides is responsible both for a high level of specificity and activity in treating conditions, however these also result in strong off-target effects if insufficiently purified or conjugated in the case of peptide conjugates [3, 4].


Separation of therapeutic peptides often relies heavily on reversed-phased HPLC (RP-HPLC), which is the most commonly used method in both the development and production of these species [5]. This method can be inefficient, however, as similarities between peptides produced industrially and their synthetic by-products result in challenging purifications [6]. The small differences in affinity for the stationary phase between the target peptide and by-products, as well as long retention times [7], and a significant effect of small changes in the mobile phase composition on the retention, further complicate purification [8].


A common solution to increase the separating power of RP-HPLC is to make use of an ion-pairing agent, such as trifluoroacetic acid, and conduct the separation at low pH; this coupled basic amino acids with the ion pairing agent, results in a net zero charge - increasing the


affinity of the peptides to the stationary phase [6]. Currently, ion exchange purification is generally avoided due to the difficulty in removing polar non-peptide impurities [9] as the elution of peptides will generally occur alongside that of some quantity of these impurities. Additionally, it can be challenging to ensure the removal of peptide by-products due to the close relation in charge between these molecules [10].


The use of a highly hydrophobic cation ion exchange stationary phase offers the possibility to carry out the ion-pairing process in reverse - the basic amino acids in the peptide pair with the acidic groups on the resin, while the hydrophobic backbone stabilises the interaction and exploits the ‘reverse-phase’-like attraction between the non-polar areas of the peptides and the resin to increase separation. This approach also facilitates the removal of upstream impurities, including host cell proteins and DNA/RNA, as well as offering the possibility for virus clearance due to the low pH of the process [5].


Experimental Resin Data


Chromalite® PCG1200FS 15AD2


Particle Size 20 - 50 µm 12 - 18 µm Pore Diameter 300 - 500 Å 200 - 300 Å Surface Area >600 m2


/g >500 m2


Functional Group


Volume Capacity


Backbone Basis Styrene/DVB Polymer Sulfonic Acid None 0.69 eq/L N/A


Styrene/ DVB


/g


Cation Exchange Chromatographic Purification


Described here is the full purification procedure following all development work: A GE Tricorn 5/200 column was packed with Purolite Chromalite®


PCG1200FS resin


according to standard practice, with an asymmetry of 0.8-1.8 as acceptable. The column was equilibrated with 5 column volumes (CV) of 20 mM citrate, 150 mM NaCl, pH 2.5 then 4 mL of a 10 mg/mL solution of crude bivalirudin applied to the column. The column was then washed with 3 CV of 20 mM citrate, 150 mM NaCl, pH 2.5 then a step elution carried out with 10 CV of 20 mM citrate, 1 M NaCl, pH 5 followed by a further elution with 10 CV dH2O. The process was carried out at a linear velocity of 300 cm/hr throughout.


Reverse Phase Chromatographic Purification


A GE Tricorn 5/200 column was packed with Purolite Chromalite®


15AD2 resin according


to standard practice, with an asymmetry of 0.8-1.8 as acceptable. The column was equilibrated with 5 column volumes (CV) of 0.1% trifluoroacetic acid (TFA) then 4 mL of the purified solution of bivalirudin applied to the column. The column was then washed with 3 CV of 0.1% TFA followed by a gradient elution carried out over 10 CV to a final concentration of 0.1% TFA in 60% acetonitrile. A final hold was carried out with 3 CV 0.1% TFA in 60 % acetonitrile. The process was carried out at a linear velocity of 300 cm/hr throughout.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68