search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
46 August / September 2019


Figure 2: Chromatograms showing the confirmation of ibutamoren in a real urinary sample (b) compared to a standard at 0.2 ng mL-1


(a).


Figure 2 shows a confirmation of this non- peptide agonist by the Drug Control Centre in a urine sample by LC-MS/MS against a standard prepared at 0.2 ng mL-1


. Recently,


the “GH-omics” approach has been developed to propose alternative forms of screening for co-administration of EPO and hGH [5]. This methodology is based on HRMS and evaluates metabolic profiles and relative changes characteristic of doping.


Hormone and Metabolic Modulators. Meldonium is most commonly detected in this drug class, although as mentioned in the previous Section there has been a decrease in AAFs with respect to 2016 down to 25% of class, followed by clomiphene and tamoxifen at 20% (Figure 3). Large molecules, such as insulin and Insulin-like Growth Factor (IGF), belong to this group with the detection of these large molecules adding more challenges from an analytical perspective. Indeed, insulin tests need to be performed in urine and blood with complex sample preparation procedures including immunopurification, prior to analysis by


4. Future directions


Biological matrices, such as oral fluid, dried blood spots and exhaled breath (EB), are currently being investigated to evaluate their suitability as alternative matrices in Anti-Doping Testing. The drive to assess the suitability of these matrices in the Anti- Doping context is that compared to urine and venous blood collection they offer less invasive sample collection and reduced costs. It is therefore considered their use may facilitate an increase in testing through the more effective use of existing resource.


However, as new alarming frontiers in doping are rising, the scientific community is also looking at unconventional doping approaches such as “brain doping”. As with other doping methods, it is based on the principle of an enhancement in performance. The novelty relies in the


high end LC-MS systems to achieve the necessary sensitivity for both screening and confirmation analyses.


application that uses electrical brain stimulations to modulate the responses on targeted brain areas, thus “interfering” with a number of physiological activities. Such technique, named transcranial direct current stimulation (tDCS), has been historically used in neuroscience and in psychiatry [6] since it allows understanding of the role of specific brain areas affecting certain activities. In particular, a weak constant direct electric current is applied by two (or more) electrodes on the scalp for longer than nine minutes and the polarity-specific effects on the cortical excitability, caused by the change in resting membrane potential, might take place [7]. Usually, tDCS that are responsible for cortical excitability are anodal, whilst those that produce cortical inhibition are catodal [8]. Several advantages are also acknowledged, such as being painless, non-invasive and a reversible technique [9], that may appeal a wider range of users.


The potential effects produced by tDCS seem to be comparable to those produced


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68