62 Water / Wastewater
New water pollution monitoring system set to make a splash initial results in the fi eld.
A new form of low-cost, 3D-printed water pollution sensor could make a splash in the world of environmental monitoring, its developers say.
A team of researchers from universities in Scotland, Portugal and Germany developed the sensor, which can help detect the presence of very low concentrations of pesticides in water samples.
Their work, outlined in a paper published in the journal ‘Macromolecular Materials and Engineering’, could make water monitoring quicker, easier and more affordable.
Pesticides are widely used in agriculture around the world to prevent the loss of crops. However, they must be carefully handled, since even small spills into soil, groundwater or seawater can be harmful to human, animal and environmental health.
Regular environmental monitoring is critically important to minimising water pollution, enabling swift action when the presence of pesticides is detected in water samples. Currently, pesticide tests are most often carried out in laboratory environments using techniques including chromatography and mass spectrometry.
While these tests provide reliable and accurate results, they are time-consuming and expensive to perform. One promising alternative is a chemical analysis tool called surface-enhanced Raman scattering, or SERS.
When light hits molecules, it scatters in a way that has distinctly different frequencies depending on the molecular structure of the molecule. SERS allows scientists to detect and identify vestigial amounts of molecules in test samples adsorbed on a metal surface by analysing the unique ‘fi ngerprint’ of how the molecules scatter light.
The effect can be enhanced by improving the metal surface to enable it to adsorb the molecules, boosting the ability of sensors to detect low concentrations of molecules in samples.
The research team set out to develop a new, more portable method of testing that could use affordable, 3D-printed materials to adsorb molecules from water samples and deliver accurate
To do so, they explored several different types of cellular architectures made from mixtures of polypropylene and multi-walled carbon nanotubes. The architectures were produced using fused fi lament fabrication, a common type of 3D printing.
The surface of the cellular architectures was coated with silver and gold nanoparticles using a common wet chemical approach to enable the surface-enhanced Raman scattering process.
They tested the ability of several different architected designs of the 3D-printed cellular materials to uptake and adsorb molecules of an organic dye called methylene blue, before they were analysed by a portable Raman spectrometer.
The best-performing material from those initial tests – a lattice (periodic cellular architecture) design combined with silver nanoparticles - was then added to test strips. Samples of sea and fresh water spiked with low amounts of real pesticides called thiram and paraquat were dropped onto the test strips for SERS analysis.
The water was drawn from an estuary in Aveiro, Portugal and from taps in the same area – locations which are subject to regular real-life water pollution monitoring tests.
The researchers found that the test strips were capable of detecting molecules of both pesticides at concentrations as low as 1 micromolar – equivalent to one molecule of pesticide to a million molecules of water.
Professor Shanmugam Kumar, of the University of Glasgow’s James Watt School of Engineering, is one of the corresponding authors of the paper. The work builds on his research in using 3D printing techniques to create nanoengineered architected lattices with unique properties.
He said: “SERS is a valuable diagnostic technique with applications in a wide range of different fi elds. The sensor substrate material we’ve developed benefi ts from a an optimal combination of the nanocarbon-engineered architected lattice’s large surface area and the remarkable optical properties of the metallic nanoparticles.
“The interaction of the strong local electromagnetic fi eld in the metallic nanoparticles and the carbonaceous material’s chemical mechanisms creates a highly active surface for SERS analysis.
“The results of this initial study are very encouraging, showing that these low-cost materials can be used to produce sensors for SERS detection of pesticides even at very low concentrations.”
Dr Sara Fateixa, of the University of Aveiro’s CICECO Aveiro Institute of Materials, co-authored the paper and designed the plasmonic nanoparticles which enable the SERS technique. She said: “While this paper examines the potential of the system to detect specifi c types of water pollutants, the technique could easily be adapted to monitor the presence of a wide range of chemicals in samples.
“In farming, for example, the milk from cattle, who are recovering from an illness, which was treated with antibiotics can’t be sold until after the drug has left their systems. Currently, the tests which prove their milk is ready to go back on the market are expensive, but our diagnostic materials could be tuned to provide reliable results much more affordably.
“We’re looking forward to continuing to develop this very promising sensor material for use in SERS applications.”
Researchers from the University of Glasgow in the UK, the University of Aveiro in Portugal, and HTWK Liepzig in Germany contributed to the paper.
The paper, titled ‘Additive manufacturing-enabled architected nanocomposite lattices coated with plasmonic nanoparticles for water pollutants detection’, is published in Macromolecular Materials and Engineering.
The research was supported by funding from the Engineering and Physical Sciences Research Council in the UK, the FCT/MEC (PIDDAC) in Portugal and the European Commission.
For More Info, email: email:
For More Info, email: email:
For More Info, email: email:
60514pr@reply-direct.com
Simple, reliable and precise ammonia measurement in water
CHEMetrics announces the release of a new Vacu-vials test kit which employs the Direct Nesslerization method to measure ammonia in drinking water, clean surface water, good-quality nitrifi ed wastewater effl uent, and seawater.
The new K-1513 instrumental test kit offers an extended shelf-life advantage over our existing K-1503 and K-1523 Nessler ammonia Vacu-vials test kits. K-1513 is offered as an alternative to these kits when a longer shelf life is desirable and refrigerated storage is not an option. This test kit can be used to measure the concentration of ammonia in seawater by using the A-1503 Accessory Solution Pack sold separately.
The K-1513 Vacu-vials Ammonia Test Kit comes in a cardboard box and contains everything needed to perform 30 tests: thirty ampoules, Stabilizer Solution, 25 mL sample cup, 3-mL syringe, ampoule blank, and instructions. This kit requires the use of a CHEMetrics Direct-Readout Photometer or a spectrophotometer capable of accepting a 13 mm diameter round cell. Instrument sold separately.
More informatin online:
ilmt.co/PL/8jpB
For More Info, email: email:
IET ANNUAL BUYERS’ GUIDE 2023/24 For More Info, email:
59786pr@reply-direct.com
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128