search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
WATER / WASTEWATER 13


distribution as the area most directly exposed to the changed climatic conditions. The project partners are the provinces of Lower Austria, Upper Austria, Styria and Salzburg, the BMLRT (Federal Ministry of Agriculture, Forestry, Environment and Water Management), the ÖVGW (Austrian Association for Gas and Water), a number of water suppliers from the above mentioned provinces as well as from Vienna and Burgenland, and the Viennese company s::can Messtechnik GmbH. The main steps of the project were defined as follows:


• Microbiological sampling of 24 water suppliers over a period of one year to record temperature-associated changes in microbiological status


• Installation of temperature data loggers


• Installation of online multi-parameter sensor systems of the type “pipe::scan” for online analysis of up to 10 measured parameters


• Evaluation of existing data (findings databases of the federal states, Federal Environment Agency and hydrographic services)


• Modelling of soil and drinking water temperatures with the inclusion of external data products


The results of the project provide information on the effects of increased temperature and all online quality parameters on water management operations in terms of supply security, stability and quality, as well as creating a data basis for findings, expert services and training on the one hand, and for future investment planning in the drinking water supply on the other.


Online multiparameter sensor system - pipe::scan


The pipe::scan is a sensor system for monitoring the drinking water quality in pipes under pressure. It measures up to 10 parameters simultaneously: Organic parameters (TOC, DOC, UV254/UVT), turbidity, color, chlorine, ORP, conductivity, temperature and pressure.


The installation is performed on the pipe under pressure by utilizing Hawle pipe saddles (sizes from DN100 - DN600). Via a “straw”, the water from the pressured pipe is pushed into the pipe::scan flow cell. A nano pump ensures that the water is pumped through the flow cell and back into the pipe without water loss and even during periods of stagnation.


the stations can be reached at any time in real time via VPN connection and are 100% remote controllable.


Results, measurement data


Interesting trends could be identified in all pipe::scan installation locations. These trends were compared with the process data from the waterworks operators, including operating data, thus enabling reliable interpretations. Some examples are given in figure 4 and figure 5.


Outlook


Figure 3: The cover of the pipe::scan provides additional security for the sensors and the operators


conductivity sensor with an integrated temperature sensor suitable for industrial use, and a miniature pressure sensor. All these sensors are optimized for the use in pressurized pipes, are characterized by extremely low maintenance requirements and have been used for years in drinking water applications all over the world.


A filter in the inlet ensures that no large particles penetrate into the flow cell and a ventilation valve ensures an air free measuring environment inside the cell. Optionally, the system can automatically clean this filter and automatically take samples in case of an alarm.


The water quality data can be sent to any central database via almost any protocol using the s::can terminal con::cube, and


The safety and quality of the drinking water supply will remain the focus of attention in the future due to the effects of climatic changes. Modelling strategies for the development of drinking water temperatures and quality parameters in the distribution to the end customer are essential tools for the estimation of future developments and support, for example, the planning of the route and the pipeline construction. In view of the changes in microbiology, it is necessary to record the variety of influencing factors and to arrive at an assessment of the climatic influence. It is important to stress that not all consequences can be predicted and continuous monitoring of biotic and abiotic parameters is essential.


Online methods for extensive water quality detection provide a valuable database, which can be compared to a variety of processes due to its resolution and is extremely useful for understanding the drinking water supply system. The possibility of early warnings when changes or contaminations occur, supplements these insights and ensures a reliable water supply during continuous operation.


In the long run, online measurement technology should be seen as a relatively small investment compared to the benefits for the water supplier, as it first of all helps to keep a constant eye on the water quality and secure the water quality even under changing environmental conditions with regard to microbiological and chemical properties. Secondly, it helps to recognize trends and one-time events in time, and last but not least, supports to optimize the operation of the infrastructure from an economic point of view.


Figure 4: The water at this measurement location is received from relatively distant sources, which have their own characteristics depending on their distance from the Danube. Therefore, periodic turbidity and organic peaks occur, but also singular peaks. The online measurements are validated and evaluated in the BOKU laboratory.


Figure 2: The pipe::scan in a typical installation environment


The sensors in the pipe::scan are well known, reliable s::can sensors which have been on the market for many years. What’s unique about these sensors is that they are fully pressure-resistant: the i::scan - an optical miniature spectrophotometer with LED technology and automatic brush cleaning for the measurement of organics (TOC, DOC, UV254, UVT), turbidity and colour, the chlori::lyser – the only pressure-resistant amperometric sensor for detection of free chlorine on the market, the pH::lyser - a very robust pH sensor without salt bridge with a polymer reference electrode, the condu::lyser - a maintenance-free 4-electrode


Author Contact Details Christoph Schönher Dipl.-Ing., University of Natural Resources and Life Sciences Vienna, Institute of Sanitary Engineering, Industrial Water Management and Water Pollution Control (SIG) • Email: christoph.schoenher@boku.ac.at


Robert Wurm Mag. (FH), Ing. & Andreas Weingartner Dipl.-Ing., scan Messtechnik GmbH • Vienna, Austria • Tel: +43 1 2197393-0 • Email: rwurm@s-can.at, aweingartner@s-can.at • Web: www.s-can.at


WWW.ENVIROTECH-ONLINE.COM IET Annual Buyers’ Guide 2020/21 Andreas Weingartner


Robert Wurm


Figure 5: This installation site on a reservoir is supplied by two sources: from a stable, more distant source, and from a water treatment plant with two well fields from the immediate environment. The wells are operated alternately. Here, peaks in turbidity or events in conductivity and organic matter are sometimes visible during start-up when switching resources. By means of online measurement technology, dynamic processes are made visible and documented here. Before the installation even experienced personnel could only guess.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116