search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
402


Katherine E. Goodman et al


Fig. 1. A printable clinical risk score for bed- side use to predict a bacteremic patient’s likelihood of infection with an extended- spectrum β-lactamase (ESBL)–producing organism at the time of organism genus and species identification. Risk-factor points are noted in parentheses and summed among the 14 variables to produce a patient’s risk score. Possible score cutoffs for ESBL-positivebacteremia, andassociated sensitivities and specificities, are reflected in Table 2. aChronic obstructive pulmonary disease, emphysema, or chronic ventilator- dependency. bLatin America (excluding the Caribbean), the Middle East (including Egypt), South Asia, China, and the Mediterranean. *This statement reflects the positive predic- tive value of the score at a cutoff point of 7.25 and should be modified by the facility to account for local prevalence of ESBL bac- teremia. Note. MDRGN, multidrug-resistant gram-negative organism; CRE, carbapenem- resistant Enterobacteriaceae. Drug-resistant organisms were defined in accordance with the Centers for Disease Control and Prevention guidelines.9


used to predict the value of the held-out observation. This process is repeated for all observations in the dataset, and performance metrics (eg, error) can be averaged across the n fitted models (in this case, decision trees) to produce a single estimate.Weevalu- ated the discrimination of the original and cross-validated models through the generation of receiver operating characteristic (ROC) curves and calculation of C statistics. Decision tree analyses were performed using the RPART (Recursive Partitioning and Regression Trees) package in R Studio version 4.1–90.99.902 soft- ware (R Foundation for Statistical Computing, Vienna, Austria). To develop a risk score, continuous variables (eg, age and anti- biotic days) were first converted into ordinal categories to reduce


complexity, given the score’s anticipated manual application. A multivariable logistic regression model was derived using step- wise variable selection with backward elimination at an α level of 0.05. To create points, regression coefficients were rescaled by dividing by the smallest final model coefficient and rounding to the nearest integer (with the exception of antibiotic therapy, which received 0.25 points per week (up to a maximum of 1 point or ≥4 weeks), to simplify end-user calculations). Patient scores were calculated by summing their respective points (risk score model). For both the multivariable regression model and the risk score


model, discrimination was assessed withROC curves and accompa- nying C statistics (ie, area under the curve). Risk score model


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122