search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Infection Control & Hospital Epidemiology


Table 1. Antimicrobial Resistance Profile of the Klebsiella pneumoniae and Kluyvera ascorbata Pathogenic Isolates and the Transconjugants TKp and TKa


K.


Antimicrobial Resistance


AMP ASB CFZ CAZ FEP SXT AK


GEN CIP


MER IMP ERT PTZ


E. coli J53


S S S S S S S S S S S S S


MER MIC, g/mL <0.0625 Resistance genes


:::


R R R R R R I I


R R R R R


>32


aph(3’)-la aac(6’)Ib-cr blaKPC-2 blaSHV-11 blaCTX-M-15 blaOXA-1 oqxA oqxB fosA


mph(A) catB4 sul1 tet(A) dfrA30


Note. AMP, ampicillin; ASB, ampicillin-sulbactam; CFZ, cefazolin; CAZ, ceftazidime; FEP, cefepime; SXT, trimethoprim/sulfamethoxazole; AK, amikacin; GEN, gentamicin; CIP, ciprofloxacin; MER, meropenem; IMP, imipenem; ERT, ertapenem; PTZ, piperacillin/ tazobactam; MIC, minimum inhibitory concentration; aph(3’)-la, aminoglycoside resistance; aac(6’)Ib-cr, fluoroquinolone and aminoglycoside resistance; blaKPC-2, β-lactam resistance; blaSHV-11, β-lactam resistance; blaCTX-M-15, β-lactam resistance; blaOXA-1, β-lactam resistance; oqxA, quinolone resistance; oqxB, quinolone resistance; fosA, fosfomycin resistance; mph(A), macrolide resistance; catB4, phenicol resistance; sul1, sulphonamide resistance; tet(A), tetracycline resistance; dfrA30, trimethoprim resistance; blaCTX-M-56, β-lactam resistance.


Microorganism K.


pneumoniae KpOT1


ascorbata KaOT2 TKp TKa


R R R R R S S S S R R R R


>32


blaKPC-2 blaCTX-M-56


R R R S I


S S S S I


R I I


2


R R R S I


S S S S I


R I I


1 blaKPC-2 blaKPC-2


495


MiSeq platform (San Diego, CA). Detailed analyses indicated that the blaKPC-2 was located on an IncN plasmid. The carbapenemase resistance gene was flanked by the insertion sequences ISKpn7 and ISKpn6, located on a Tn4401 transposon, isoformb.9 The scaf- fold bearing the blaKPC-2 was 50,417 bp long, and no other resistance gene was found in this scaffold. The IncN plasmidwas also found in the K. ascorbata genome, containing the same blaKPC-2 resistance gene and the same genome environment, indicating that a plasmid transference occurred betweenKpOT1 and KaOT2when the patient was in the hospital unit. Further in silico analyses indicated that K. pneumoniaeKpOT1 belonged to the sequence typeST437,one of the most prevalent sequence types among the KPC-producing K. pneu- moniae and related to the clonal complex 258, which is distributed worldwide.10,11 Other resistance genes were identified in both iso- lates (Table 1). This whole-genome shotgun sequencing project has been deposited in the DDBJ/ENA/GenBank (accession no. RHFM00000000 for Klebsiella pneumoniae OT1 and accession no. RHFN00000000 for Kluyvera ascorbata OT2). The versions described in this article are versions RHFM01000000 and RHFN01000000. This clinical case highlights the possibility of plasmid-mediated


horizontal transfer between species during infections. Furthermore, KPC-2–producing K. ascorbata has only been isolated once, from a rectal swab in a surveillance study in Israel12 and once inChina from a patient’s biliary drainage.13 We suggest that the carbapenem- susceptible K. ascorbata recovered in the fourthCT-guided drainage procedure could be related to a different clone or a heteroresistance event, but we cannot confirmthis hypothesis. As far as weknow, this is the first report of a KPC-2–carrying plasmid transference from a multidrug-resistant Klebsiella pneumoniae ST 437 to a Kluyvera ascorbata during abdominal infection.


Author ORCIDs. Otávio Hallal Ferreira Raro, 0000-0001-7374-0788


Acknowledgments. We thank the support (finance code - 001) and the PhD scholarship (code - 1794919) offered by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES).


Financial support. This study was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 and by internal funding.


Conflicts of interest. All authors report no conflicts of interest relevant to this article.


References In this case, 2 isolates were collected: 1 from the second CT,


named K. pneumoniae KpOT1, and 1 from the third CT, named K. ascorbata KaOT2. Both were resistant to meropenem. They were forwarded to a molecular investigation of carbapenemase genes through conventional PCR, and both were blaKPC-2 positive. Conjugation experiments were performed using the azide-resistant E. coli J53 as the receptor strain. One transconjugant was obtained from each isolate; both presented an increase in the minimum inhibitory concentration (MIC)8 for meropenem, from <0.0625 μg/mL to 2 μg/mL (KpOT1 transconjugant) and 1 μg/mL, (KaOT2 transconjugant), confirming the transferability of the plasmids. The susceptibility profiles of KpOT1, KaOT2, and the transconjugants are shown in Table 1. To better analyze the blaKPC-2 carrying plasmids, the whole genomes from both strains were sequenced using the Illumina


1. Ben-David D, Kordevani R, Keller N, et al. Outcome of carbapenem- resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect 2012;18:54–60.


2. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant infection and the impact of Klebsiella pneumoniae antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008;29:1099–1106.


3. Pitout JDD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 2015;59:5873–5884.


4. Porreca AM, Sullivan KV, Gallagher JC. The epidemiology, evolution, and treatment of KPC-producing organisms. Curr Infect Dis Rep 2018;20:13.


5. Farmer JJ, Fanning GR, Huntley-Carter GP, et al. Kluyvera, a new (rede- fined) genus in the family Enterobacteriaceae: identification of Kluyvera ascorbata sp. nov. and Kluyvera cryocrescens sp. nov. in clinical specimens. J Clin Microbiol 1981;13:919–933.


6. Carter JE, Evans TN. Clinically significant Kluyvera infections. Am J Clin Pathol 2005;123:334–338.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122