search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
1200


Table 2. Results from Analysis of Simulated Data Event 1 Etiologya


SE Method


Full cohortg Traditionalh IPW KM IPW GLM


HR (95% CI)c


2.00 (1.70–2.35) 1.94 (1.56–2.40) 1.98 (1.60–2.45) 1.99 (1.60–2.47)


(Log HR)d 0.08


HR (95% CI)c 0.51 (0.48–0.53)


0.51 (0.39–0.67) 0.53 (0.47–0.61)


Derek Hazard et al


Event 2 Etiologyb SE


(Log HR)d 0.02


0.11 …… 0.11 0.11


0.14 0.07


RR (95% CI)e


3.50 (3.00–4.09) …


3.74 (2.70–5.20) 2.94 (2.37–3.64)


Event 1 Prediction SE


(Log RR)c 0.07 …


0.17 0.11


regression weights. aTrue event 1 HR, 2.00. bTrue event 2 HR, 0.50. cCause-specific hazard ratio for exposure. dCalculated with estimated standard errors for Cox regression and conditional logistic regression, calculated with robust standard errors for IPW and log binomial model. eUsing log binomial model. fDistinct individuals. gCox regression. hConditional logistic regression.


Cohort Sizef


10,000 1,606 1,606 1,606


Note. HR, hazard ratio; CI, confidence interval; SE, standard error; RR, risk ratio; IPW, Cox partial likelihood with inverse probability weighting; KM, Kaplan Meier weights; GLM, logistic


exposure–outcome in simulated data for a subsequent event set- ting. They found that adjusting for matching in the weight esti- mation had little influence on the estimates, whereas adjusting in the Cox regression was essential. Thus, we recommend including possible confounding variables in the weighted Cox model. A further extension proposed by Wolkewitz et al14 is con-


the time-matched risk sets is not recommended. Borgan15 found that reusing controls when close matching is required (eg, in the presence of batch effects for biological samples) can lead to bias in simulation studies. Salim et al16 found that in situations with little overlap in the distributions of the matching variables for 2 separate outcomes, reusing controls was less efficient than simply sampling new time-matched controls. Ohneberg et al17 applied NCC and case-cohort designs to the


ducting subdistribution incidence density sampling and estimat- ing the cumulative incidence function by assuming a Fine and Gray model. In this variation, the patients are available for selection until their (potential) censoring time and the inclusion probability weights are subsequently adjusted. Simulation studies and application to the Spanish ICU data showed IPW estimation to be in good agreement with the full cohort (data not shown). The method could also be extended to a “subsequent event” set- ting where a second event is a subset of a first event. For example, the controls sampled with respect to acquiring infection (first event) could be reused to analyze death from hospital infection (second event). Our study has some limitations. In some situations, breaking


Acknowledgments. We would like to thank the Spanish ICUs for their invaluable contribution to collecting the data.


Financial support. D.H. has received support from the Innovative Medicines Initiative Joint Undertaking (grant no. 115737-2, Combatting Bacterial Resis- tance in Europe—Molecules Against Gram-Negative Infections [COMBACTE- MAGNET]). This work was supported by the German Research Foundation (grant no. WO 1746/1-2 to M.W.). The funders had no role in data collection and analysis, decision to publish, or preparation of the manuscript.


Conflicts of interest. All authors report no conflicts of interest relevant to this article.


References


1. Wolkewitz M, Cooper BS, Bonten MJM, Barnett AG, Schumacher M. Interpreting and comparing risks in the presence of competing events. BMJ. 2014;349:g5060.


2. Andersen PK, Geskus RB, de Witte T, Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol 2012;41:861–870.


3. Wolkewitz M. Accounting for competing events in multivariate analyses of hospital-acquired infection risk factors. Infect Control Hosp Epidemiol 2016;37:1122–1124.


4. Weber S, Cube M von, Sommer H, Wolkewitz M. Necessity of a competing risk approach in risk factor analysis of central line–associated bloodstream infection. Infect Control Hosp Epidemiol 2016;37: 1255–1257.


same Spanish ICU data set and found that the NCC design had slight advantages in power and precision in assessing the effect of a dichotomous APACHE score on acquiring infection. A further comparison of a case-cohort design and an NCC design reusing controls in a setting with multiple outcomes is of certain interest. Our results indicate that an NCC design does not have the pur- ported disadvantage in such a setting and that a full competing- risks analysis can be performed without collecting new data. This methodology provides a clear improvement over established NCC methods.


Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/ice.2018.186


5. Aiken AM, Mturi N, Njuguna P, et al. Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study. Lancet 2011;378:2021–2027.


6. Schumacher M, Allignol A, Beyersmann J, Binder N, Wolkewitz M. Hospital-acquired infections—appropriate statistical treatment is urgently needed! Int J Epidemiol 2013;42:1502–1508.


7. WolkewitzM, von Cube M, Schumacher M. Multistate modeling to analyze nosocomial infection data: an introduction and demonstration. Infect Control Hosp Epidemiol 2017;38:953–959.


8. Obadia T, Opatowski L, Temime L, et al. Interindividual contacts and carriage of methicillin-resistant staphylococcus aureus: a nested case- control study. Infect Control Hosp Epidemiol 2015;36:922–929.


9. O’Fallon E, Kandell R, Schreiber R, D’Agata E. Acquisition of multidrug- resistant gram- negative bacteria: incidence and risk factors within a long-term care population. Infect Control Hosp Epidemiol. 2010;31: 1148–1153.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144