search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Journal Highlights


Techniques and Biological Applications


Measuring the Autocorrelation Function of Nanoscale T ree-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm by Y Li, D Zhang, I Capoglu, KA Hujsak, D Damania, LS Cherkezyan, EW Roth, R Bleher, J Wu, H Subramanian, VP Dravid, and V Backman, Microsc Microanal 23(3) (2017) 661–67


Biological processes are highly dependent on the nanoscale architecture of the cellular components. Statistical measures, such as the autocorre- lation function (ACF) of the 3D mass–density distribution, are widely used to quantify cellular nanostructures. Conventional electron tomography to characterize the 3D mass–density distribution, from which ACF can be calculated, has been inadequate for thick biological structures because of the inverse relation between voxel resolution and total reconstructed volume. We have developed a robust method to calculate the ACF of the 3D mass—density distribution without tomography. Assuming the biological mass–density distribution is isotropic, our method allows for accurate ACF calculation of the 3D mass–density distribution with a single projection image from scanning transmission electron microscopy and a thickness map from atomic force microscopy. Here, we present validation of the ACF reconstruction algorithm and its application to calculate the ACF of the 3D distribution of mass–density of a human buccal cell nucleus. T is method may provide important insights into architectural changes that accompany cellular processes.


STEM HAADF and AFM measurements were taken from the cell nucleus (region 2). The co-localization was achieved by scanning a feature on the SE image (region 1) to locate the AFM tip (red dot), which was then offset to the center of the nucleus (blue dot). A background (region 3) was measured for AFM thickness calibration.


A top journal in Microscopy


Editor   , University of Michigan, USA The only ourna


  nd  


Miicroscopy 


  


     


am  


 c bridge.org/mam/submit


View the journal online at cambridge.org/mam Micrrosc pycopy Soc cietty y of Am merica 2017 July • www.microscopy-today.com 63


Published for the Microscopy Society of America Ed tor:


Th on y jour al owned by scientists and published for scientists, Mcrosco y and Mic 


croanalysis provides original research papers in


   


 


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76