This page contains a Flash digital edition of a book.
UCD Mathematical, Physical & Geological Sciences (MPG)


Financial Mathematics BSc (Hons) (NFQ Level 8)


CAO Code DN200 MPG


CAO Points Range 2014 515 — 625 Length of Course 4 Years DN200 Places 402


Entry Requirements English ¬ Irish ¬ Mathematics (Min OB3/HD3 in LC or equivalent) ¬ One laboratory science subject (Min OB3/HD3 in LC or equivalent.) Applied Mathematics or Geography may be used instead of a laboratory science subject) ¬ Two other recognised subjects


Important advice: We recommend that all students in Financial Mathematics should have a minimum Grade HB3 in Leaving Certificate Higher Level Mathematics or equivalent.


Leaving Certificate Passes in six subjects including those shown above, of which two must be minimum HC3


A-Level/GCSE See www.ucd.ie/myucd/alevel


Other EU Applicants see www.ucd.ie/myucd/eu


Non-EU Applicants see www.ucd.ie/myucd/noneu


Level 5/6 FETAC Entry Routes Yes, see www.ucd.ie/myucd/fetac


Level 6/7 Progression Routes Yes, see www.ucd.ie/myucd/hetac


Mature Entry Route Yes, see page 182


Other courses of interest Actuarial and Financial Studies


Computer Science Theoretical Physics


Why is this course for me? If you have a strong interest in Mathematics, enjoy problem solving and are interested in how Mathematics is used in business and finance, this degree in Financial Mathematics will give you an understanding of the mathematical theories that underpin financial models, as well as computational expertise in the algorithms that price financial products. One example of a financial model included in the course is the Black-Scholes option pricing model, dating from 1973, which is one of the earliest equations developed and used to price options. Implementations of these models, including computer programming, form a key part of the course.


What will I study? This is a sample pathway for a degree in Financial Mathematics. Sample topics include probability theory, statistical modelling, computational science, fundamentals of actuarial and financial mathematics, advanced corporate finance, stochastic analysis and actuarial statistics.


First Year Statistics ¬ Applied & Computational Mathematics ¬ Mathematics ¬ Optional Science modules ¬ Elective modules


Second Year Applied & Computational Mathematics ¬ Mathematics ¬ Statistics ¬ Finance ¬ 1 other Science subject ¬ Elective modules


Third Year Financial Mathematics ¬ Elective modules


p 143 p 142 p 138


Fourth Year Financial Mathematics (modules include computational finance, stochastic models, Bayesian analysis, and advanced corporate finance)


All Science courses are full time, with many student timetables running from 9.00am to 5.00pm or later. Depending on the subject choices, a weekly timetable can include lectures, practicals and tutorials.


Assessment varies with each module but may comprise continuous assessment of practicals, written exams and online learning activities.


Career & Graduate Study Opportunities Graduates with training in Financial Mathematics work in fields as diverse as: – Quantitative positions in the financial sector


– Risk modelling in banking and insurance


– Computing in business, technology, research and academia


Graduates can also pursue a range of MSc or PhD programmes such as the MSc in Actuarial Science, MSc in Quantitative Finance, or an MSc in Statistics.


International Study Opportunities Students may apply to study abroad for a semester or year in third year in a range of worldwide universities. Potential universities include:


– University of Texas at Austin, USA – University of California, USA – University of Perugia, Italy – University of Konstanz, Germany


“Security of financial transactions is extremely important in today’s society. My research interests include the area of Elliptic Curve Cryptography, which uses the mathematical theory of elliptic curves in real-world applications of cryptography. I am the Director of the Claude Shannon Institute, where we have a team doing cutting-edge research in cryptography and coding theory. My research team recently set a world record cryptographic break, which demonstrated possible vulnerabilities in encryption technology used in areas such as financial transactions. This degree in Financial Mathematics is taught by mathematicians and statisticians with a broad range of expertise, such as Bayesian statistics and stochastic analysis, topics which are used constantly in the financial sector.”


Professor Gary McGuire Head of UCD School of Mathematics & Statistics


www.ucd.ie/myucd/ financialmathematics


132


Professor Gary McGuire UCD School of Mathematics & Statistics Belfield, Dublin 4


head_sms@ucd.ie +353 1 716 2560 facebook.com/UCDScience


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200