This page contains a Flash digital edition of a book.
TechFront Research and Development in Manufacturing and Technology Research Team Develops New Ultralight, Ultrastiff Additive Materials A


team of researchers from Lawrence Livermore Na- tional Laboratory (LLNL; Livermore, CA) and Mas- sachusetts Institute of Technology (MIT; Cambridge, MA) has developed a new material for additive manufacturing processes that is as dense and light as an aerogel, but has 10,000 times more stiffness.


This material is described in the researchers’ paper pub- lished in a June 20 article in the journal Science. The paper, “Ultralight, Ultrastiff Mechanical Metamaterials,” outlines the development of micro-architected metamaterials that have properties not found in nature and that maintain a nearly constant stiffness per unit of mass density. The materials, the researchers say, hold promise for future use in develop- ing components used in automobiles, aircraft or space vehicles.


“These lightweight materials can withstand a load of at least 160,000 times their own weight,” said Law- rence Livermore Labs Engineer Xiaoyu “Rayne” Zheng, the lead author of the Science article. “The key to this ultrahigh stiffness is that all the micro- structural elements in this material are designed to be over-constrained and do not bend under applied load.” While most lightweight cellular materials have mechanical properties that degrade substantially with reduced density because their structural ele- ments are more likely to bend under applied load, the materials developed by the research team maintain ultrastiff


Spadaccini, corresponding author of the article, who led the joint research team. “We fabricated these materials with pro- jection micro-stereolithography.” The team’s additive micromanufacturing process involved using a micro-mirror display chip to create high-fidelity 3D parts one layer at a time from photosensitive feedstock materi- als. This allowed the team to generate materials with complex 3D microscale geometries that are otherwise challenging or, in some cases, impossible to fabricate. “Now we can print a stiff and resilient material using a desktop machine,” said MIT professor and key collaborator Nicholas Fang. “This allows us to rapidly make many sample pieces and see how they behave mechanically.”


Lawrence Livermore Engineer Xiaoyu “Rayne” Zheng studies a macroscale version of the unit cell, which constitutes the ultralight, ultrastiff material.


properties across more than three orders of magnitude in density. The observed high stiffness is shown to be true with multiple constituent materials such as polymers, metals and ceramics, according to the research team’s findings. “Our micro-architected materials have properties that are governed by their geometric layout at the microscale, as opposed to chemical composition,” said LLNL Engineer Chris


The research team was able to build microlattices out of polymers, metals and ceramics. They used polymer as a template to fabricate the microlattices, which were then coated with a thin-film of metal ranging from 200 to 500-nm thick. The polymer core was then thermally removed, leaving a hollow-tube metal strut, resulting in ultralightweight metal lattice materials.


August 2014 | ManufacturingEngineeringMedia.com 35


Photo courtesy Julie Russell/LLNL


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276