This page contains a Flash digital edition of a book.
INDUSTRY I ANALYSIS


currently stand at US$ 0.60 per watt.Calyxo’s optimism is based first and foremost on the ambitious announcements made by CdTe pioneer First Solar. In March the Americans announced new expansion and innovation plans triggering an immediate surge in their share price. By 2018 First Solar is planning to nearly double its capacity from its current 1.9 to 3.5 Gigawatt. Economies of scale thanks to higher capacities produced as well as the efficiency increase from 13.2% to 17.2% by 2017 are to “markedly bring down” manufacturing costs for CdTe modules, say First Solar.


Quality control: crystalline silicon cells are becoming ever cheaper. One reason for this is the improved properties of cell blanks, the so- called wafers. Photo: SolarWorld AG


flat glass segment is difficult since producers are struggling with excess capacities. But solar energy is definitely a business for the future.”


Innovations in solar glass and solar modules will also be centre stage at the Congress “solar meets glass” at the forthcoming glasstec. For the time being, solar power can only compete with conventionally generated power in a few regions with abundant sunshine. To change this, PV producers must urgently make further progress in cost cutting – and this is best achieved with help from their suppliers.


Thin film resistance Thin-film producers, in particular, have ambitious targets. As the prices of customary silicon modules dropped over the past few years they lost sight of their original aim to oust the comparatively “clumsy” crystalline competitors from the market by means of thin and low-cost coated modules. But the technology, which had almost been discarded, could now be heralding a comeback – and, hence, boost demand for high-tech glass. For instance, thin-film manufacturer and former Q-Cells-subsidiary Calyxo has just put a new 60-Megawatt line for cadmium-telluride (CdTe) into operation in the Eastern German city of Bitterfeld-Wolfen. The company invested EUR 54 million to expand production capacity at the site to a total of 85 Megawatt.


Calyxo had every reason for this capital expenditure. “We will bring down production costs in the medium term to less than US$ 0.50 per watt. We will then be producing at the lowest costs worldwide,” says company boss Florian Holzapfel. To compare: according to US market research company GTM Research, manufacturing costs for crystalline “China modules”


30 www.solar-international.net I Issue IV 2014


The company sees its biggest sales market practically right on the doorstep. Agreed targets specified by the US federal states for renewable energies, the so-called Renewable Portfolio Standards, are forcing some American energy supply utilities to raise their green power levels drastically. The best option, particularly in the sunny south west of the USA, are large solar power plants. These can already produce a kilowatt hour for less than eight cents – cheaper than conventional coal and gas-fired power plants.


CIGS time is now


Also anticipating a significant rise in sales figures are the producers of CIGS-based, thin-film modules (copper, indium, gallium and selenium). Solar Frontier, a subsidiary of the Japanese Showa Shell group, explained that its CIGS factory with 900 MW in the Southern Japanese city of Kunitomi had been running at full capacity all last year thanks to strong domestic demand. Now Solar Frontier is planning another 150-MW factory in Northern Japan. In Taiwan the Taiwan Semiconductor Company (TSMC) wants to implement 1 GW of CIGS production capacity. Korean firm Samsung has announced a new 200 MW factory for 2014, which is also to be ramped up to one GW in 2015. The Chinese energy group Hanergy even plans to build 5.25 Gigawatt of new CIGS capacities.


Thin but rugged: solar glass is only two millimetres thick these days. This saves material costs and makes it possible to build robust double-glass modules. Photo: F-Solar


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96