INVERTER I TECHNOLOGY
A hybrid approach to inverters
Inverters are now recognised as a key technology for solar and PV and are a focus for companies seeking continual improvements. Dr. Georges Tchouangue, Chief Engineer for Power Semiconductors at Toshiba Electronics Europe discusses a SiC hybrid approach to inverter technology.
SILICON CARBIDE (SiC) devices have the potential to unlock performance and efficiency improvements in applications ranging from rail traction to renewable energy generation. Now, the introduction of hybrid technologies that combine these performance and efficiency advantages with the high- power handling capabilities of silicon injection-enhanced gate transistors (IEGTs) is providing engineers with an effective way of significantly reducing losses while minimizing equipment size.
Improving the efficiency of motor drives, even by only a small percentage, can save a significant quantity of energy normally
wasted as heat. This can translate into positive benefits for business operating costs, equipment design and performance, and carbon footprint. High-power semiconductors have made tremendous advances in recent years, as new device architectures, fabrication processes and technologies have helped to improve both switching and conduction efficiency.
In order to meet wider system requirements such as reliability and overall cost, designers of high-power controllers such as choppers and inverters are typically faced with a choice of a thyristor or Insulated Gate Bipolar Transistor (IGBT) as the
18
www.solar-international.net I Issue IV 2014
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96