Medical Metrology
Also, since the QC-20W ballbar test report meets the require- ments of ISO 230-4, it can be accepted as part of the reporting requirement in the FDA regulations,” Warren said.
New Sensors and Verifications Even when developing a new sensor, the data requirements
for the FDA are important considerations. Such is the case with Hexagon Metrology (North Kingstown, RI) and a pilot project they are pursuing using Micro-Focal Computed Aided Tomography (Micro-CT). Tis Micro-CT device measures parts in a working cylinder of space about 140-mm tall and about 200 mm in diameter, about the size of a small can of soda, according to Steve Darrouzet, applications manager for Micro CT. Te nominal scan resolution is about 5 µm to cap- ture the whole field-of-view, though the device can scan down to 0.5 µm (by giving up field-of-view).
First Article Inspection, Many Times Te variability of the human body is a unique aspect
of manufacturing some implants. David Olson of Verisurf (Anaheim, CA) explained the high-tech way of manufacturing prosthetics is to scan the human side of the device and ‘reverse engineer’ it, creating a 3D CAD model to produce a perfect fit. Te Verisurf soſtware package is designed to convert
data—especially point clouds from metrology devices—into CAD for reverse engineering or ‘as built’ applications. Olson also believes that creating accurate profiles from point cloud data is a special strength of the Verisurf package, especially creating profiles. While the concept of First Article Inspection is certainly
not unique to medical devices, manufacturing such one-off orthopedic implants takes it to the extreme. In cases requiring perfect match, every prosthetic could be considered a First Ar-
"If even one programmer in one of those facilities decides they need to change the tolerances to the program ... a number of issues arises."
“It is targeted initially for an implantable cardiac device,”
Darrouzet said. Because of this focus, early in their development they knew that calibration routines would be vital in making the device useful to their target market. Tey made these similar to the international standards for touch probe CMMs, ISO 10360, but adapted for the unique aspects of a CAT scan sensor. “What FDA regulators are looking for is that the equipment is calibrated to known standards,” Darrouzet said. He pointed out that while rigorous, the FDA gives much
flexibility to the manufacturers themselves. What to measure depends on the risks of the part. Te variability in medical de- vices is so vast—from stents, to orthopedic implants, to tongue depressors—flexible regulations are a necessity. An inspection might be quite simple for a set of tongue depressors or drug containers compared to a cardiac drug-eluting stent. “Simple devices with a low impact on the patient might
use simple statistical measures reporting on lots, whereas a cardiac device will be 100% inspected, over many critical fea- tures, and tracked by serial number,” he said. Even then, the lot of tongue depressors must be as traceable as an individual cardiac stent. Hexagon Metrology also offers services to jump-start
companies. While some routines in their software, such as PC-DMIS or PC-DMIS Reshaper, are broadly applicable, special-purpose ones are needed for the unique needs of each customer and their parts. “We build in traceability and other requirements that meet the CFR Title 21 needs for our clients. They do not have to simply buy a piece of equipment and then do it on their own—we can help them,” Darrouzet said.
80 Medical Manufacturing 2014
ticle. Olson cites the international ISO 13485 for quality man- agement of medical devices as a critical requirement for First Article Inspection. “A company would cite the requirements of ISO 13485 for First Article Inspection and inform the FDA that is what they are doing,” he said, to meet CFR Title 21. Of course, not all medical devices are so unique, and in
those cases, Olson is quick to point out that the First Article inspection plan developed in Verisurf can be adapted as a pro- duction inspection plans as well. Verisurf also contains SPC routines for evaluating production lots that do not require 100% inspection. While all this is technically challenging, Olson finds one
of the bigger challenges is more personal. “Te biomedical industry of necessity is very conservative. You are dealing with the human body, human lives, and legal liability,” he said. “Industry professionals are just starting to get comfortable with 3D models and inspections based on 3D CAD. Quality professionals are used to looking at 2D drawings—we have to prove to them that 3D CAD models are better.”
Measuring is a System Process Criss from Mitutoyo also points out an important aspect of
measurement data and quality—soſtware and measuring devices are only part of a quality system. “Sometimes a new customer will ask if our soſtware is FDA compliant,” Criss said. He can point out their Measurlink soſtware has all the functions a system designed to satisfy FDA reporting requirements needs. But, he added, “To be truly FDA compliant, it is all about the process that the customer employs, how they use our soſtware within that process to ensure that they’re adhering to FDA standards.”
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216