This page contains a Flash digital edition of a book.
Medical Manufacturing


• Pharmaceutical induced stents, anchors, needles, and sheaths


• Pharmaceutical powder inhalers • Diabetic pump with onboard valves • Hydrogel, and collagen implants • Micro aspirators • Biopsy forceps, sensors, and gears • Neurosurgical coil assemblies • Transdermal patches with injection-molded polymer needles


• Intraocular and ophthalmic implants • Hearing aids • Cranium reconstruction implants and tissue reconstruction matrixes


• Microfluidic point of care devices • Tiny endoscopes • Smart cancer therapies • Micro-guided surgery


A few planets need to be aligned in order for thin-walled


micro molding to be possible: a generous melt flow polymer (generally speaking >10-g/10-min melt flow); an extremely accurate core-to-cavity alignment (generally speaking <25% of tolerance); and highly balanced flow path (by mold design, part design, venting, etc.). Most thin-walled micro molding applications exhibit a


level of extreme manufacturing challenge. It is rare that they are manufacturable as initially designed or napkin-sketched, but oſten they are scaled down versions of something similar on the market, just several magnitudes smaller or requiring an experimental material due to a drug-releasing agent or characteristic.


A Solid Process Plan Tese devices may require pharmaceutical drugs directly


compounded with or added to polymers, metals, membranes, and have working gears, levers, and drive mechanisms to make the device function repeatedly and with robust longevi- ty. With these functions in mind, and the fact that these devic- es are so thin-walled, it is important that they are developed in such a way that it is expedient, robust, and tested to form, fit, and function to be able to work in extreme environments such as the human body or at exposed temperatures and pressures. As a result, thin-walled micro molded components require a solid process plan for success. Tis thin-walled micro molding plan may include some or


all of the following critical considerations: Proper material selection: low viscosity, low molecular weight


polymers; drying; moisture testing; material characterization. Micro computational analysis: thermal analysis; mold flow,


fill, deflection analysis; computational fluid dynamics. Ultra-precision tooling: robust mold design to last full de- preciation; core to cavity alignment; pre-validated spares.


36 Medical Manufacturing 2014


Elastomeric catheter tip overmolded onto a nylon tube.


A process plan for thin-walled micro molded device or


assembly must first consider if the thin walls will fill with a certain material, melt flow, and tooling strategy. A solid model is used to perform computational analysis to theoretically esti- mate these conditions and their design. Because micro molds and initial parts can be costly in their development cycle, micro mold flow analysis provides an insurance policy that a particular design will fill with a particular material. Micro molded components can be as small as dust specks or have features that are that small.


Flow Analysis and Modeling Methods An assumption made all too often when comparing


parts made by conventional molding methods to micro molding methods is that parts can be filled with the same software and same modeling methods. Flow analysis and modeling parts flowing through a 0.02" (500-µm) gate is


Properly sized and selected micro molding machine: shot


size appropriate; screw design fitting shear and heat profile of material; adequate injection pressures (30,000–50,000 psi; 207–345 MPa). Solid molding process plan: DOE; specialty nozzles; extreme


temperature, humidity; injection position control. Surface finish/coating: surface area for tiny geometry adhe-


sion; coating/plating/surface treatment for bonding micro assemblies; static-resistant surfaces; cleanliness. Handling: Te less handling the better; delicate tooling to


move, bond; extreme registration of part in several planes. Metrology: critical inspection criteria to microns; gage


R&R plan. Packaging: blister packaging; static-free bags; nitrogen- sealed foil bags; glass or plastic vials.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216