This page contains a Flash digital edition of a book.
Medical Materials


Implants: Biocompatibility and Wear Issues Implants, orthopedic and otherwise, are all FDA Class


Two and Class Tree devices, with stringent requirements, the foremost of which is biocompatibility, MacNeal said. “Of the materials that are favored from a biocompatibility standpoint in metals, titanium would be the number one choice for implants—it’s basically inert in the body. Tere are also some alloys of stainless steel—people talk about ‘surgical stainless steel’ and those two would be the two big ones.” But as manufacturers in other industries know, tita-


nium has its challenges: “Titanium is difficult to work with because it does catch fire. When you’re machining it, you really have to control your feeds and speeds. Its ratio of hardness to brittleness is not great, and it doesn’t have good wear properties—it abrades. In an articulating joint like a knee or hip, you can’t have metal-on-metal there, it’s much too soft.” Cobalt chrome, another popular medical metal, has been


used as a wear surface in orthopedic implants, but, as has been widely reported, it’s under fire right now: “People who have cobalt chrome metal-on-metal interfaces in their orthopedic joints get wear debris resulting in much higher than average levels of chromium ions in their body,” MacNeal noted. “Tose higher levels weren’t planned for and weren’t


in the original filing data, so even though they haven’t been linked to any health problems, they’re an unexpected outcome, and the FDA is asking questions. So orthopedics companies are trying to get away from cobalt chrome for such applications. “Instead of a metal-on-metal wear surface, companies


typically will have a HDPE—high-density polyethylene wear surface, which simulates cartilage. In an actual hip joint, the bone is covered with cartilage, which when lubricated with synovial fluid is essentially friction-free. Inside the orthopedic joint, a biocompatible metal is coated with HDPE to mimic


the cartilage role. But HDPE too can abrade, and in this case, the wear debris—inert polyethylene particles—builds up behind the metal, and as the body attempts to clean up these wear particles it can trigger an autoimmune reaction which causes resorption of bone tissue—a condition called osteoly- sis. Te bone pulls away from the metal joint that had been screwed into it, and the joint can start to become loose. Tat’s usually why some patients need revision surgery—and why people who are, say, 65 years old may elect to put off having replacement surgery, in order to not need to replace the joint at age 75. “So the hunt has been on for a better wear surface. Enter


ceramics. Ceramics are super-hard and are great wear sur- faces. Tey don’t abrade so you don’t have the wear debris is- sues. Tere have been two issues with ceramics, however. Te first is that if the clearance isn’t completely and totally per- fect, you end up with ceramic squeaking against ceramic: As people were taking steps, their joints were literally squeak- ing—loudly!—and these are permanent implants, so there’s no easy way to minimize the sound. Te other challenge with ceramics is that they’re comparatively brittle—if they receive the wrong impact, they break, creating a problem much worse than noisy joints.” While the squeaking is a quality of life problem, it is not


much of a wear problem. Ceramics are essentially self- lubricating. But there are also serious machining issues with ceramics. Tey are extremely hard, so shaping them is a prob- lem—especially when you need such a perfect fit.


Nitinol: Thanks for the Memory A material that is growing in popularity for certain applica-


tions is the titanium/nickel alloy nitinol, which has shape- memory capabilities that make it exceptional, MacNeal says, and there are players in the industry that specialize in making devices that take advantage of that ability.


Stainless steel surgical scissors component made via metal injection molding—MIM—at Parmatech. 44 Medical Manufacturing 2014


Photo courtesy ATW Companies


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216