This page contains a Flash digital edition of a book.
Medical Manufacturing


microns at the lowest possible cost per component, the more knowledge and experience shops have will help them remain competitive in this industry.


Problems and Pitfalls Depending on how the cobalt chrome starts out, whether


the form is cast, forged or bar, difficulties machining it will vary. Cast blanks typically have less material to remove than other forms but tend to have a “tough skin” to break through. Bar stock normally needs a drilling operation to remove some of the excess material. But bar stock is easier to machine than forged or cast forms because the hardness levels throughout it are more consistent. According to the Rockwell C scale, the hardness of cobalt chrome registers between a 40–46 HRc but some particles in the structure can register up to 58 HRc. Tere is a direct correlation between material hardness and tool life. Te higher the hardness of the alloy, the shorter the tool life and more rapid the wear will be to the cutting edge.


Proper Tool Selection When using indexable tools for this type of material, now


is not the time to be penny smart and dollar foolish. Skimping on quality tools will only lead to bigger problems down the road. From rough drilling to surface finishing, the insert can make and break a job. Swapping out prematurely worn inserts


and constantly throwing away broken tools will not keep a shop operating in the green. What types of inserts work best on this type of material?


Look for inserts that impart a strong cutting edge and offer ex- cellent resistance to avoid excessive notch wear. Round-shaped inserts with a positive rake angle offer multiple advantages. For internal turning of the spherical cut in a ball and socket hip joint, round inserts optimize the roughing process giving you a balance of security and productivity. Notch wear is a common problem when machining these


parts. Notching is mechanical wear which is concentrated at the depth of cut. It drastically reduces tool life and produces an unwanted burr on the component. Tis inferior quality leads to scrapped material and a reduction in productivity levels. When using round inserts, using an approach angle of less than Kr 45° will offer reliability and durability and require fewer tool changes. Round inserts also allow an increased feed rate and cutting speed to achieve maximum productivity. When using a round insert with the depth of cut well below the radius, the chip thickness hex is reduced relative to feed and the cutting edge length is increased. Tis results in lower temperatures being generated and the opportunity to increase both feed and speed for maximum output. Components machined for hip joints are the internal and external spheres of the acetabular cup, the femoral head and


Knowing the proper cutting tool data and choosing the correct tools are important for process security and productivity and can extend insert and tool life.


40 Medical Manufacturing 2014


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216