This page contains a Flash digital edition of a book.
Trends in Tech Developments An industry think tank rumbled into St. Louis for the 117th A MODERN CASTING STAFF REPORT


Congress. These papers touched on new alloy developments, testing methods and process studies that will lead to higher quality castings, better plant efficiency, and expanded cast- ing end-use markets. MODERN CASTING editors


D 1 2 3 3 5 6 *Failed before yield 56 | MODERN CASTING May 2013


picked a handful of presentations that received peer reviews among the top percentile of all the presenta- tions. These papers focused on high strength aluminum, weld repair of aluminum castings, improved mold testing methodologies, compacted graphite iron casting skin analysis and computer modeling tools.


ozens of vetted scholarly papers were presented during the 117th


Metalcasting


Presentation Sponsored Research: High


Strength Cast Al-Zn-Mg-Cu: Tensile Properties (13-1569)


Authors Edward Druschitz, Robin Foley,


and John Griffin, Univ. of Alabama at Birmingham, Ala.


Background


Te 7xxx series of alloys are among the highest strength of wrought alumi- num alloys, but casting them typically results in two microstructural defects, intermetallic particles and microporos- ity. Six experimental Al-Zn-Mg-Cu al- loys were cast under 1 MPa of pressure, heat treated and mechanically tested to determine the effect of zinc to magne-


Table 1. Average Mechanical Properties of Al-Zn-Mg-Cu Tensile Bars Alloy


Zn (%) 7.9


8.1 7.9 8.2 12.5 12.4


Mg (%) 4.9


2.1 1.4 1.4 3.4 2


Cu (%) 0.9


0.9 0.9 0.9 0.8 0.6


Condition SUP


Chill (SUP Casting) HIP (SUP Casting) SUP


Chill (SUP Casting) HIP (SUP Casting) Atmospheric


Chill (Atmospheric) HIP (Atmospheric) SUP


Chill (SUP Casting) HIP (SUP Casting) SUP


Chill (SUP Casting) HIP (SUP Casting) SUP


Chill (SUP Casting) HIP (SUP Casting)


sium ratio and processing conditions on tensile properties (Table 1).


Conclusions


• Best properties were achieved in the low alloy casting (8.2Zn-1.4Mg) with the highest solidification rate.


• Te chilled solidification-under- pressure casting achieved a 468 MPa yield strength, 525 MPa ten- sile strength, and 9% elongation.


• Ductility and strength decreased as the cooling rate decreased.


• Intermetallics dominate the ultimate strength and elongation when po- rosity is minimized.


• Higher solidification cooling rates are required to ensure ductility in the alloy, even when porosity is eliminated.


Metalcasting Congress, armed with updates on the latest metalcasting advancements.


Yield * * *


538 490 522 450 *


461 464 468 464 * * * * * *


UTS 312 371 269 565 524 567 466 0


495 505 525 508 324 432 353 578 422 510


% Elongation 0.3% 0.7% 0.8% 3.6% 1.7% 3.3% 2.1% 0 %


4.0% 5.8% 9.0% 5.3% 0.9% 1.1% 0.8% 1.5% 1.4% 0.5%


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95