This page contains a Flash digital edition of a book.
Measurement & Inspection


Measurement (ITM) system for use on its own machine tools. At full spindle speed, cameras take high-speed digital pictures and process them. The ITM does not measure just one single point; it optically inspects the whole tool contour. Features measured include length, diameter, radius and tip quantity, and quality. By comparing the results against a previously stored image of the tool, it can compensate for pollution, such as chips or coolant drops, by digitally ‘cleaning’ the image of the tool before making a measurement. The company said it typically offers an absolute Z-reference and tool radius below the range of ±1 µm in the process.


“There are many such optical systems that reside outside of the machine,” explained Eric Ostini, product manager for GF AgieCharmilles. “The problem with outside of the machine is that the system does not take into consideration where the tool sits in the spindle, what the heat of the tool is during normal operation.” He also pointed out that tool blends are especially important in moldmaking and other machining


operations, and the ITM is especially good at measuring the blends of radii and curvature, determining tool wear in these critical areas.


The improvements of their machining centers themselves drove the need for improved measurement. “When we went to a linear motor drive system [on our machine tools], we were seeing precision in our movements that were above the capa- bility of a normal machine,” he explained. Touch probes and laser systems were not providing accuracies needed to get the best finishes, tool blends, and accuracies.


Conserving Cycle Time with Alternative Sensing There are other ways of determining tool wear or break-


age, too. Measuring the part, for instance, during or after machining, is often used to infer the condition of the tool. The advantage is that the machine does not stop while tool wear is measured—theoretically, there is no sacrifice in cycle time, a key advantage.


While air gaging as a measuring Cool Flash: Optimized cooling to the cutting edge


HAIMER Cool Flash Handling


Benefi cial Application


Cooling range at the cutting edge Tool life


Chip removal RPM


Application range Diameter range


simple and safe


without interference contour 100 %


maximized optimized


for High Speed Cutting (HSC) for all areas of application from 1/8”


Cooling slots feed the coolant down to the cut- ting edge of the tool.


Haimer USA, LLC | 134 E. Hill Street | Villa Park, IL 60181 | USA Phone +1-630-833-1500 | haimer@haimer-usa.com | www.haimer-usa.com


Tool Holders Shrinking Technology Balancing Machines Measuring Instruments Tool Management


tool is not new, Jenoptik Industrial Metrology (Hommel-Etamic; Rochester Hills, MI) has taken the concept to a new level with its TPE200 pneumo- electronic transducer. This component converts pneumatic pressure signal variations into numerical values with a response time of less than 15 ms using a #10-air nozzle. Using an application-specific pneumatic system, the sensor achieves repeatability of better than 0.01 µm (to DIN standard 2271), depending on the application. Air gaging, by its very nature, is limited in its range of measurement. However, this nifty device measures in ranges from ±5 µm to ±500 µm, according to Andreas Blind, vice president of sales for Jenoptik, well outside the normal range of air gaging. Included in the package is a second sensor for measuring the air supply pressure to compensate for variations, and a third sensor measures temperature. “This is ideal when paired with grinding or hon- ing operations for inner diameters,” ex-


58 ManufacturingEngineeringMedia.com | January 2013


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132