79 nanotimes EU-Projects
German KIT Intensifies Printable Organic Solar Cell Research
A group of researchers headed by Dr. Alexander Colsmann at the Light Technology Institute (LTI, Karlsruhe Institute of Technology, KIT) will start work this month. The project is scheduled for a duration of four years and aims at enhancing the efficiency of organic solar cells to more than 10%. For this purpose, the researchers use tandem architectures combining solar cells of complementary absorption spectra. The Federal Ministry of Education and Research has granted funding of EUR4.25 million. In this project the KIT researchers are supported by the Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam, represented by Dr. Hartmut Krüger, and the University of Queensland/Australia, represented by Professor Paul Burn, who supply new materials for organic solar cells. Merck KGaA is the industry advisor of the project.
http://www.kit.edu/en/
Cost-Effective, High Quality CNTs
Single-wall carbon nanotubes (SWNTs) are a new type of 1-dimensional (1D) structures that have received growing attention. While experimental data and modelling have led to better understanding of SWNT characteristics and behaviours, techniques are required for cost-effective fabrication and successful integration of SWNTs into microelectronic products.
As such, European researchers initiated the "Spark ablation for nanotube growth" (SPANG) project to develop cost-effective methods to synthesise high quality SWNTs and to evaluate their use in printed circuit boards (PCBs). Numerous methods are available for producing SWNTs. While chemical vapour deposition and the carbon arc method are relatively inexpensive, they produce defective material affecting electrical and mechanical properties of the SWNTs. Researchers set out to compare the quality of nanotubes produced by three different techniques. Laser ablation produces long nearly defect-free SWNTs. Although good control over process parameters is achieved, throughput is low and lasers are expensive. Channel spark ablation allows similar control and product quality but with lower cost. The arc-jet method facilitates control similar to laser ablation but with the important benefit of enabling continuous as opposed to batch processing.
SPANG investigators compared SWNTs produced by the three methods using a variety of technologies including electron microscopy, optical absorption and X-ray diffraction. Extensive standardisation work was done to facilitate quality control.
In addition, investigators studied the use of nanotube networks in lead resistors and capacitors of PCBs.
Contact: Dr. Siegmar Roth, Max-Planck-Society, Phone: +49-711-689-1434:
http://www.fkf.mpg.de/en
http://www2.fkf.mpg.de/klitzing/research_groups/research_groups.php
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89