42 nanotimes News in Brief
Medical Implant Applications // Ultrananocrystalline Diamond-Coated Membranes Show Promise for Medical Implant Applications © Based on Material by ANL, USA
Ultrananocrystalline diamond (UNCD) displays biological and mechanical properties that make it a promising choice for promoting epidermal cell migration on percutaneous implant surfaces. Percutaneous implants are commonly used for treatment of medical and dental conditions. Biocompatibility of the implant material plays a crucial role in preventing infections that cause premature failure. Recent studies have shown that microporous membranes can facilitate migration of epidermal cells, enabling the development of a seal that resists movement of fluid and microorganisms and therefore improving the implant life. A team of CNM users from the University of North Carolina and North Carolina State University, working with the Nanofabrication & Devices Group, devised a simple but innovative approach that combines both of these aspects simply by coating silicon nitride microporous membranes with a conformal coating of ultrathin (about 150nm) UNCD films. The resulting membrane not only provides the required porous structure, but also offers exceptional mechanical and biocompatible properties. The team demonstrated that their method also works on nanoporous anodized aluminum oxide (AAO) membranes that are coated with UNCD to reduce the pore size down to 30 to 50nm. Scanning electron microscopy (SEM) and Raman spectroscopy were used to examine the pore structure and chemical bonding of the resulting membrane. Growth of human epidermal keratinocytes on uncoated and UNCD-coated silicon nitride microporous membranes was compared by using the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Both membranes displayed increased cell growth due to their porosity, and the UNCD coating did not alter the viability of human epidermal keratinocytes. Because of its exceptional chemical and mechanical properties, it is expected that UNCD will provide a more stable implant-tissue interface than silicon nitride.
Image: SEM image of AAO membrane coated with tungsten followed by UNCD exhibits 30-to 50-nm pore diameter. © ANL
Shelby A. Skoog, Anirudha V. Sumant, Nancy A. Monteiro-Riviere und Roger J. Narayan: Ultrananocrystalline Diamond-Coated Microporous Silicon Nitride Membranes for Medical Implant Applications, In: JOM Journal of the Minerals, Metals, and Materials Society, Vol. 64 (2012), No. 4, Pages 520-525, DOI:10.1007/s11837-012-0300-x:
http://dx.doi.org/10.1007/s11837-012-0300-x
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89