This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
65 nanotimes News in Brief



In Physical Review Letters, Kwanpyo Kim and colleagues at the University of California, Berkeley, have cataloged the experimental Raman spectra of a series of graphene double layers where the top layer is rotated with respect to the bottom layer in one degree increments, up to a 30 degree mismatch. Kim et al. fabricated the double-layered samples by first growing single layers of polycrystalline graphene and then stacking them together. Transmission electron microscopy allowed the group to precisely measure the relative angle between the two layers. © Sami Mitra/APS


Kwanpyo Kim, Sinisa Coh, Liang Z. Tan, William Regan, Jong Min Yuk, Eric Chatterjee, M. F. Crommie, Marvin L. Cohen, Steven G. Louie, and A. Zettl: Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure, In: Physical Review Letters, Volume 108,  Issue 24, June 15, 2012,  Article 246103 [6 pages], DOI:10.1103/PhysRevLett.108.246103:


http://dx.doi.org/10.1103/PhysRevLett.108.246103


A team of scientists at Berkeley Lab and the University of California at Berkeley (US), led by Alessandra Lanzara in collaboration with Joseph Orenstein and Dung-Hai Lee of the Lab's Materials Sciences Division (MSD), has used a new and uniquely powerful tool to attack some of the biggest obstacles to understanding the electronic states of high-temperature superconductors – and how they may eventually be put to practical use. The team reports their research using ultrafast laser ARPES (ultrafast Angle-Resolved PhotoEmission Spectroscopy) in the journal Science. "The mechanism binding Cooper pairs together in high-Tc superconductors is one of the great mysteries in materials science," says Christopher Smallwood, a member of Lanzara‘s group and first author of the Science paper. "What we‘ve done with ultrafast laser ARPES is to start with a high-Tc superconductor called Bi2212 and cool it to well below the critical temperature where it becomes superconducting."


Christopher L. Smallwood, James P. Hinton, Christopher Jozwiak, Wentao Zhang, Jake D. Koralek, Hiroshi Eisaki,


Dung-Hai Lee, Joseph Orenstein, Alessandra Lanzara: Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission, In: Science
Magazine, June 01, 2012, Vol. 336, No. 6085, Pages 1137-1139, DOI:10.1126/science.1217423:


http://dx.doi.org/10.1126/science.1217423


http://www.nature.com/nphys/journal/v7/n10/full/nphys2027.html


Scientists and engineers at the University of Wisconsin-Milwaukee (UWM) have discovered an entirely new carbon-based material that is synthesized from graphene. The discovery, which the researchers are calling "Graphene Monoxide (GMO)," pushes carbon materials closer to ushering in next-generation electronics.




Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89