This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
73 nanotimes News in Brief




Theoretical physicist Ali Naji from the IPM in Tehran and the University of Cambridge, UK, and his colleagues have shown how small random patches of disordered, frozen electric charges can make a difference when they are scattered on surfaces that are overall neutral. These charges induce a twisting force that is strong enough to be felt as far as nanometers or even micrometers away. The authors found that the twisting force, created by virtue of the disorder of surface charges, is expected to be much stronger and far-reaching than the remnant forces. The latter are always present, even in the absence of charge disorder, and are due to fluctuations at the atomic and molecular levels.


Naji A., Sarabadani J., Dean D.S., and Podgornik R. (2012), Sample-to-sample torque fluctuations in a system of coaxial randomly charged surfaces, In: European Physical Journal E, Soft Matter and Biological Physics, Volume 35, Number 3, March 2012, Article 24 [7 Pages], DOI: 10.1140/epje/i2012-12024-y


http://dx.doi.org/10.1140/epje/i2012-12024-y


 


The promise of ultrafast quantum computing has moved a step closer to reality with a technique to create rewritable computer chips using a beam of light. Researchers from The City College of New York (CCNY) and the University of California Berkeley (UCB, US) used light to control the spin of an atom’s nucleus in order to encode information. The researcher have developed a technique to use laser light to pattern the alignment of "spin" within atoms so that the pattern can be rewritten on the fly. Such a technique may one day lead to rewritable spintronic circuits.


Image: The probe head used to send radio-frequency pulses onto the coil used for pulsed spin manipulation of a gallium arsenide (semiconductor) sample. © Yunpu Li


Jonathan P. King, Yunpu Li, Carlos A. Meriles, Jeffrey A. Reimer: Optically rewritable patterns of nuclear magnetization in gallium arsenide, In: Nature Communications, Vol. 3, June 26, 2012, Article number 918, DOI:10.1038/ncomms1918: http://dx.doi.org/10.1038/ncomms1918


http://india.cchem.berkeley.edu/~reimer/







Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89