70 nanotimes News in Brief
"Dr. Koratkar is conducting pioneering, high-impact work in graphene that is helping solidify the international reputation of Rensselaer in the field of nanomaterials. Nikhil is also an outstanding educator, adviser, and mentor who cares deeply about the success of his students," said David Rosowsky, dean of the School of Engineering at Rensselaer. "The entire School of Engineering joins me in congratulating him on his appointment as the Clark and Crossan Professor of Engineering."
http://homepages.rpi.edu/~koratn/
IMAGE: Maxi Bellmann, researcher at the Institute for Print and Media Technology of Chemnitz University of Technology, shows the printed loudspeaker area. The bottom side of the paper loudspeaker can be printed with advertising messages – in this case you can see the logos of the project partners. © Hendrik Schmidt
The Institute for Print and Media Technology at Chemnitz University of Technology, Germany, presents printed loudspeakers on paper substrate. The printed paper loudspeaker is connected to an audio amplifier like a conventional loudspeaker. "Frequency response and hence sound quality are very good and the paper is surprisingly loud. Just the bass of the paper-based loudspeaker is a bit weak," explains Dr. Georg Schmidt, senior researcher at pmTUC. The thin loudspeakers, which are printed in the laboratories of pmTUC, contain several layers of a conductive organic polymer and a piezoactive layer.
http://www.tu-chemnitz.de/pm
http://www.pppv.de
Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, and the Interdisciplinary Research Institute in Lille developed a low cost method for manufacturing multilayered graphene sheets. The new method does not require any specialized equipment and can be implemented in any laboratory.
The new process for producing graphene sheets starts with graphite, one of carbon allotrope, on the molecular level resembling a sandwich composed of many graphene planes. These sheets are hardly separable. To weaken interactions between them, graphite must be oxidized, which is usually accomplished with the Hummers method. A powder obtained in that way – graphite oxide – is subsequently suspended in water and placed in an ultrasonic cleaner. The ultrasounds exfoliate oxidized graphene sheets from each other and the resulting colloid contains single graphene oxide flakes with diameter of about 300nm.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89