This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
11-08 :: August 2011


nanotimes News in Brief


exquisite precision. “The heart of our device is an array made of graphene ribbons only millionths of a meter wide,” says Feng Wang of Berkeley Lab’s Materials Sciences Division, who is also an assistant professor of physics at UC Berkeley, and who led the research team. “By varying the width of the ribbons and the concentration of charge carriers in them, we can control the collective oscillations of electrons in the microribbons.”


87


Alex Zettl, Y. Ron Shen & Feng Wang: Graphene plasmo- nics for tunable terahertz metamaterials, In: Nature Na- notechnology AOP, September 04, 2011, DOI:10.1038/ nnano.2011.146: http://dx.doi.org/ 10.1038/nnano.2011.146


The German Advisory Council on the Environment (SRU) released a report entitled Precautionary Stra- tegies for Managing Nanomaterials, which makes recommendations for a “responsible and precautio- nary development” of nanotechnology.


http://www.umweltrat.de/SharedDocs/Downloads/


EN/02_Special_Reports/2011_09_Precautionary_Stra- tegies_for_managing_Nanomaterials_KFE.pdf?__ blob=publicationFile


Image: The graphene microribbon array can be tuned in three ways. Varying the width of the ribbons changes plasmon resonant frequency and absorbs corresponding frequencies of terahertz light. Plas- mon response is much stronger when there is a dense concentration of charge carriers (electrons or holes), controlled by varying the top gate vol- tage. Finally, light polarized perpendicularly to the ribbons is strongly absorbed at the plasmon reso- nant frequency, while parallel polarization shows no such response. © LBL


Long Ju, Baisong Geng, Jason Horng, Caglar Girit, Micha- el Martin, Zhao Hao, Hans A. Bechtel, Xiaogan Liang,


A group of scientists from the University of Gothen- burg and the Royal Institute of Technology (KTH), Sweden, have become the first group in the world to demonstrate that theories about nanoscale spin waves agree with observations. This opens the way to replacing microwave technology in many applications.


M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Car- lotti, G. Gubbiotti, F. B. Mancoff, M. A. Yar, J. Åkerman: Direct observation of a propagating spin wave induced by spin-transfer torque, In: Nature Nanotechnology AOP, August 28, 2011, DOI:10.1038/nnano.2011.140: http://dx.doi.org/10.1038/nnano.2011.140


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103