This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
11-08 :: August 2011


nanotimes News in Brief


and efficient long-range transfer of emitted photons followed by subsequent refocusing into nanoscale volumes accessible to near- and far-field detection. Optoplasmonic superlenses are versatile building blocks for optoplasmonic nanocircuits and can be used to construct “dark” single-molecule sensors, resonant amplifiers, nanoconcentrators, frequency multiplexers, demultiplexers, energy converters, and dynamical switches. © PNAS


61


S.V. Boriskina and B.M. Reinhard: Spectrally and Spatially Configurable Superlenses for Optoplasmonic Nanocircuits, In: PNAS, Vol. 108, No. 8, February 22, 2011, Pages 3147- 3151, DOI:10.1073/pnas.1016181108: http://dx.doi.org/10.1073/pnas.1016181108 Department of Chemistry and the Photonics Center, Boston University, USA: http://www.bu.edu/chemistry/


Complementary-Type Graphene Inverters Operating at Room Temperature


Purdue researchers are making progress in creating digital transistors using a material called graphene, potentially sidestepping an obstacle thought to dra- matically limit the material‘s use in computers and consumer electronics. This composite image shows the circuit schematics of a new type of graphene inverter, a critical building block of digital transistors, left, and scanning electron microscope images of the fabricated device. (Image © Hong-Yan Chen, Purdue University Birck Nanotechnology Center) The Purdue researchers are the first to create graphene inverters that work at room temperature and have a gain larger than one, a basic requirement for digital electronics that enables transistors to amplify signals and control its switching from 0 to 1.


Findings were detailed in a paper, “Complementary-Type Graphene Inverters Operating at Room-Tempe- rature,” presented in June during the 2011 Device Research Conference in Santa Barbara, Calif.


Hong-Yan Chen, Joerg Appenzeller: Complementary-Type Graphene Inverters Operating at Room Temperature: http://www.purdue.edu/newsroom/research/2011/110906AppenzellerGraphene.html


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103