This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
76


nanotimes News in Brief


Gold Nanorods // Researchers Find Way To Align Gold Nanorods On A Large Scale


© Text: NCSU


11-08 :: August 2011


R


esearchers from North Carolina State University, USA, have developed a simple, scalable way


to align gold nanorods, particles with optical pro- perties that could be used for emerging biomedical imaging technologies. Aligning gold nanorods is important because they respond to light differently, depending on the direction in which the nanorods are pointed. To control the optical response of the nanorods, researchers want to ensure that all of the nanorods are aligned.


The NC State researchers developed a way to ali- gn the gold nanorods using electrospun polymer “nano/microfibers.” Electrospinning is a way of pro- ducing fibers, with a liquid polymer being discharged from a needle and then solidifying. The researchers produced fibers as thin as 40 nm in diameter and as thick as three microns in diameter – thus, nano/mi- crofibers.


The researchers mixed the gold nanorods into the polymer solution, causing them to be incorporated directly into the polymer. The nanorods align when the fibers form. The force experienced by the liquid polymer as it is emitted from the electrospinning needle creates “streamlines” in the polymer solution.


“The nanorods are forced into alignment with these streamlines, like logs in a river that swing into ali- gnment with the current,” says Dr. Joe Tracy, an assistant professor of materials science and enginee- ring at NC State and co-author of a paper describing the study. “And as the polymer solidifies, the aligned nanorods are locked into place.”


“Electrospinning efforts at NC State are world-class and have yielded a wide range of novel and functio- nal materials,” adds Dr. Rich Spontak, a professor of chemical and biomolecular engineering and mate- rials science and engineering at NC State and paper co-author. “What makes this result truly exciting is that the alignment is multiscale, or simultaneously achieved at different length scales. The nanorods are aligned at nanoscale dimensions, whereas the fibers are aligned at larger length scales.”


This approach has been used in the past to align other kinds of nanorods, but this is the first time it has been done with gold nanorods. “To the best of our knowledge, this is also the first time nanorods of this size have been aligned in electrospun fibers,” Tracy says, referring to the fact that the study focused on relatively short nanorods.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103