promote beneficial outcomes for the animal. The high-quality research conducted to understand the exact mechanism of action of PBs has demonstrated that it increases metabolic functions intrinsic to the microbiome that are able to detoxify unabsorbed amino acids and leaked host protein, independent of the microbiota composition. This leads to higher resilience to enteric stress, better nutrient utilisation, improved welfare and reduced emissions. Similar to its host, the microbiome possesses a metabolism
that can be modulated in specific ways. For example, being able to positively alter the protein metabolism of microbes would lead to an enhanced production of beneficial substances, such as branched and short-chain fatty acids, and polyamines. On the other hand, suppressing undesirable functions of the bacteria can reduce ammonia/ammonium production and emission, and reduce the generation of skatole and other indoles that increase luminal pH, cause epithelial damage and negatively impact litter quality and welfare, among other negative effects. We have demonstrated that our PB consistently shifts overall
microbial metabolism (Figure 1A), by increasing the abundance of beneficial pathways and decreasing the abundance of putrefactive pathways (Figure 1B). It is essential to understand that it’s not protein fermentation in
general that is a concern, but specific functions of bacterial protein fermentation. Being able to specifically reduce these undesirable functions is important in poultry production. Increasing nitrogen metabolism and the conversion of ammonia into amino acids can influence the total amount of nitrogen and ammonia excreted, with the amino acids potentially used to build microbial protein. Decreasing nitrogen and ammonia secretions can help lower producers’ environmental impact.
(B)
Final considerations Enteric bacterial infections are one consequence of modern intensive animal production and can lead to major financial losses and increase the risk of foodborne illness from bacterial contamination of meat and meat products. However, influencing the functions of the microbiome that can lead to higher utilisation of nitrogen and lower production of undesirable products may be a viable approach to mitigate intestinal issues. The increased production of propionic and butyric acids by the bacteria may be another mechanism by which precision biotics act on the host and support nutrient use. By modulating what bacteria are produced in the intestines of chickens, we can support performance and welfare and deliver more consistent results for producers. Regional restrictions on product availability may apply. Please speak with your local DSM representative for more information and advice: DSM Animal Nutrition & Health, Heanor:
Tel +44 (0) 1773 536539
Figure 1: Overall microbiome metabolism shift promoted by SymphiomeTM SymphiomeTM
(A), and abundance of pathways changed with relative to control.
(A)
FEED COMPOUNDER JANUARY/FEBRUARY 2023 PAGE 29
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68