MPUs and MCUs
Figure 1. An architectural diagram of burst DMA during DMA operations.
controller blocks CPU operation for a very short period to move a large chunk of memory, and then relinquishes the bus back to the main CPU, repeating until the transfer is complete. Burst DMA is generally considered the fastest type.
Conversely, single byte transfer or cycle-stealing DMA takes a cue from the CPU and only carries out operations between CPU instructions. It inserts a single operation between two CPU cycles, and thus is in effect “stealing” CPU time.
Figure 2. Cycle-stealing DMA during DMA operations occurs between two CPU cycles.
Due to the limitation of executing one operation at a time, it is generally slower than burst DMA.
Example of a burst DMA architecture
Figure 3. Transparent DMA during DMA operations occurs while the processor works on tasks that do not access the data or address buses.
An example of a burst DMA controller can be found on the MAX32660 (see Figure 4). The upper path corresponds to data flow, and the lower path represents control/status flow between the advanced high performance bus (AHB) and the DMA logic. The DMA controller can behave as a buffer interface between the AHB and memory or peripheral modules, depending on how it is configured. DMA logic sits between the DMA buffer and each peripheral to independently manage each unique peripheral bus during transactions. A DMA operation can move up to 32 bytes at a time, provided the source/ destination buffers can contain this much data. The buffer can hold up to 16MB
and is configurable to transmit or receive I2C, SPI, I2S, and UART in addition to internal memory transfers. Programming DMA control may vary slightly between protocols, but the peripheral transactions are managed exclusively by the DMA controller. An arbiter module controls the bus access restrictions between the four DMA channels and the CPU, granting requests according to a priority system.
Modern DMA options
Figure 4. An architectural diagram of the DMA controller on the MAX32660.
www.cieonline.co.uk
In summary, DMA is a critical feature for modern embedded systems that manage an abundance of sensors and require high throughput, efficiency, and low power operation. It behaves like a coprocessor dedicated exclusively to memory and peripheral bus transactions. Using DMA is imperative for many applications to minimise power consumption and lighten processor loads. For example, health and wearable devices handle large amounts of data throughput, but they also must conserve as much battery charge as possible, all while handling sensitive data. Analog Devices offers fast burst DMA architectures on microcontrollers well- equipped for low power wearable designs, such as the MAX32660 and MAX32670. In addition, DARWIN Arm microcontrollers such as the MAX32666 are built for wearable and IoT applications with integrated Bluetooth 5. These devices have two 8-channel burst DMA controllers with integrated support for event-based transactions. They even feature best-in-class security hardware with a secure bootloader and trust protection unit (TPU) for accelerating ECDSA, SHA-2, and AES encryption. From the early IBM PCs to network cards, and now to secure, low power wearable and IoT devices, DMA is an essential feature of modern digital systems.
www.analog.com Components in Electronics April 2023 39
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62