search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Feature sponsored by Test & measurement


Anu Kätkä, Vaisala


Keith Dunnavant, Munters


DATA CENTRE INNOVATION


HOW MEASUREMENT ACCURACY ENABLES ENERGY EFFICIENCY


T 28


he global demand for electricity is about 20,000 terawatt hours; the ICT (Information and Communications Technology) sector uses 2,000 terawatt hours and data centres use approximately 200 terawatt hours, which is one per cent of the total. Data centres therefore represent a significant part of most country’s energy consumption.


It has been estimated that there are over 18 million servers in data centres globally. In addition to their own power requirements, these IT devices also require supporting infrastructure such as cooling, power distribution, fire suppression, uninterruptable power supplies, generators etc. In order to compare the energy efficiency in data centres, it is common practice to use ‘power usage effectiveness’ (PUE) as the measure. This is defined as the ratio of total energy used in a data centre to the energy used by IT only. Optimally the PUE would be one, which would mean that all energy is spent on IT, and the supporting infrastructure is not consuming any energy. So, to minimise the PUE, the objective is to reduce the consumption of the supporting infrastructure such as cooling and power distribution. The typical PUE in traditional legacy data centres is around two, whereas big hyperscale data centres can reach below 1.2. The global average was approximately 1.67 in 2020. This means that, on average, 40 per cent of total energy use is non-IT


In the following article, Anu Kätkä from Vaisala and Keith Dunnavant from Munters describe recent trends in the data centre sector, and discuss the impact of HVAC measurements on energy efficiency. With spiraling energy costs and governments urgently seeking greenhouse gas emissions reduction opportunities, data centre energy efficiency is the focus of international scrutiny.


consumption. However, PUE is a ratio, so it does not tell us anything about the total amount of energy consumption, which means that if the IT devices are consuming a high level of energy in comparison with the cooling system, the PUE will look good. It is therefore important to also measure total power consumption, as well as the efficiency and the lifecycle of the IT equipment. Additionally, from an environmental perspective, consideration should be given to the way in which the electricity is produced, how much water is being consumed (both in generating the electricity and at the site for cooling), and whether waste heat is being utilised.


The PUE concept was originally developed by the Green Grid in 2006 and published as an ISO standard in 2016. The Green Grid is an open industry consortium of data centre operators,


cloud providers, technology and equipment suppliers, facility architects, and end-users, working globally in the energy and resource efficiency of data centre ecosystems striving to minimise carbon emissions.


PUE remains the most common method for calculating data centre energy efficiency. At Munters, for example, PUE is evaluated at both a peak and annualised basis for each project. When computing PUE metrics, only the IT load and cooling load are considered in the calculation of PUE. This is referred to as either partial PUE (pPUE) or mechanical PUE (PUEM). The peak pPUE is used by electrical engineers to establish the maximum loads and to size back-up generators. The annualised pPUE is used to evaluate, and compare with other cooling options, how much electricity will be consumed


March 2023 Instrumentation Monthly


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82