search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Monitoring & metering


pollution and source apportionment, although in this application, there is really only one source: the volcano. “Dense monitoring networks also


offer other advantages. For example, all of the monitors can be co-located and calibrated against the same reference monitor, which improves repeatability, and if one sensor is providing significantly different readings, the cause can be investigated, thereby improving the overall reliability of data.” The US state of Hawai’i


encompasses the volcanic Hawaiian archipelago and the Kilauea volcano has been the most active of the five volcanoes that together form the island of Hawai’i. Kilauea is one of the world’s most active volcanoes; erupting continuously for around 35 years until August 2018, and representing the largest single


source of sulfur dioxide (SO2) in the United States, and one of the largest in the world. The Hawai’i project was created


because high levels of SO2 and


particulates from the volcano represent a threat to the health of local inhabitants as well as commercial interests including livestock and agriculture. Funding is provided by MIT's Department of Civil and Environmental Engineering, with additional support from the US EPA and the Tata Center for Technology and Design. MIT has worked with Alphasense on


previous projects studying volcanic emissions, but Alphasense’s technical director Dr John Saffell says: “The eruption in Hawai’i provided a rare opportunity to study and understand the gaseous emissions of a volcano, so it was serendipitous that MIT already had staff and equipment on the ground and we were very pleased to be able to help. “It was extremely gratifying to note


that the sensors were able to perform well during the eruption in a highly aggressive atmosphere. However, one of the main reasons for the success of the monitoring program was that the sensors are relatively quick and easy to


Instrumentation Monthly April 2019


deploy, especially given that MIT had already designed the associated hardware and software.” Looking back, Kroll says:


“We were able to establish the monitoring network in time to record the entire eruptive phase, allowing us to characterise its effects on the local community. Interestingly, even though Kilauea had been erupting nearly continuously since 1983, that period of activity appears to have ended. Nevertheless, the volcano is still active; magma is still moving underground and there are still some highly localised emissions. “We now have the opportunity to


measure background air; something that isn’t usually possible with polluted environments, and this is providing us with another great opportunity to measure a different phase in Kilauea’s life. If and when Kilauea erupts again, we will be ready to measure its air quality impacts over the course of the entire eruption.”


Alphasense www.alphasense.com 15


The monitoring stations were


designed and built by MIT staff. Battery powered with a solar charger, the monitors provide data in almost real-time via built-in 3G cellular communications


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80