search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
NOVEMBER 2022 Ӏ TECHNOLOGY REPORT


j they actually call it a


Lightweight Surface Manipulation System, or LSMS. Current devices used for in-space operations are designed to work in orbit only - that is, in zero g - and so do not have the strength to operate on planetary surfaces. (‘Lifting’ in zero gravity is a term without much meaning anyway.) Traditional cranes are specialised to the task of raising off the ground rather than the manipulator-type positioning operations that would be useful on the moon or Mars. So the LSMS is a multi-functional machine that can perform as many different tasks as possible. The innovations incorporated


into it allow it to lower payloads to the ground over a significant


142 CRANES TODAY


portion of the workspace without the use of a drum-hoist mechanism. It functions like a hybrid of crane and robot manipulator, providing a rigid connection with the payload and very precise control of it. Minimal weight of course is essential, given the fuel-costs of transporting every kilogram of cargo into space. The LSMS uses a truss architecture with pure compression and tension members to achieve a lightweight design. Multiple spreaders arranged like spokes on a wheel allow the LSMS to maintain its high structural efficiency throughout its full range of motion. A real innovation is that rod portions of the tension members automatically lift off


…and how it will look on the moon (Credit: NASA)


and re-engage the spreaders as the joint articulates, which allows a large range of motion while maintaining mechanical advantage. It has three degrees of freedom,


provided by waist, shoulder and elbow joints; and three links, - kingpost, arm and forearm, each of them 3.75 metres long. From the ground it can unload from the deck of a lander around 6m high; the first-generation design can lift 150kg on earth, 500kg on Mars, and 1000 kg on the moon. Maximum reach when configured as a horizontal boom is 7.5m. It is self-deployable – it can set


itself up on the new surface using its own actuators – and it can mount itself on a mobile rover as well as on the ground. Special purpose


f


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161