search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EDITOR’S CHOICE





A major collaborative study into alternative approaches to phosphorus removal at rural wastewater treatment works has delivered promising results, with one new method already in use by a UK water company.


The ALT-P project was led by United Utilities, with project partners Southern Water, Wessex Water, University of Portsmouth, Power & Water, Kolina, Hydro Industries and Evergreen. Spring Innovation was the knowledge-sharing partner.


Due for completion in November 2025, ALT-P aims to provide the water industry with a holistic view of the cost, capability, operation, maintenance and carbon impact of sustainable phosphorus removal approaches. The project’s goal is to help companies reduce reliance on chemicals, in particular metal- based coagulants such as ferric sulphate.


After receiving funding through Ofwat’s Water Breakthrough Challenge in 2021, researchers focused on three alternative phosphorus removal methods – electrocoagulation, natural coagulation and reactive media. A range of different technologies from various providers were explored in lab tests and onsite trials.


Findings from each study were shared during United Utilities’ ALT-P project day on 17 September 2024 and have also been published on the Spring knowledge-sharing platform. In summary, these are the findings:


Electrocoagulation


The electrocoagulation process uses electrical reactions to bind particles together. Four electrocoagulation systems were trialled over 14 months at United Utilities’ Woolton wastewater treatment works (WwTW) in Liverpool.


The trials showed that electrocoagulation effectively removed phosphorus without requiring liquid chemical dosing. Two technologies showed particular promise when compared to chemical dosing. The benefits of using electrocoagulation included a reduced impact on alkalinity, removal of health and


34 | January 2025 | draintraderltd.com


safety risks associated with chemical storage and a potential to reduce carbon impact.


Natural coagulants


The use of natural bio-based coagulants is predicted to become more widespread in the coming years, as technology providers discover more natural materials that can offer sustainable phosphorus removal. Extensive laboratory research into extracts of materials including plants, algae and tree bark was undertaken by ALT-P researchers.


A six-month trial followed in a test lane at Woolton WwTW to compare the standard solution, ferric sulphate dosing, with natural coagulants. The research found that there is a viable method of phosphorus removal using natural coagulants, dosed in combination with ferric sulphate.


In a key outcome for the project, United Utilities has already started using natural coagulants at sites in Cheshire as part of their AMP7 investment programme.


Reactive media Reactive media are a range of adsorptive materials which


The ALT-P project has achieved fantastic outcomes, which can


directly support the water sector’s drive to embed more sustainable treatment processes.“


Phosphorus project finds


alternatives to chemical treatment Promising findings shared across UK water sector


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76