search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MONITORING DISSOLVED OXYGEN IN HIGH-PRESSURE BOILER SYSTEMS


Many power plants use fossil fuels or nuclear power as sources of heat to boil purifi ed water for the production of steam. The pressurised steam drives turbines to produce electricity. The quality of boiler feedwater must be carefully controlled throughout operations to optimise system performance. Proper water quality maintenance maximises operating effi ciency and the lifespan of boiler equipment.


Maintaining Water Quality in High- Pressure Boilers


Dissolved oxygen, or DO, is one of the most important water quality parameters to control in a boiler system. It is the primary corrosive agent of steam-generating systems. Even low concentrations of DO can be highly destructive, causing localised corrosion and pitting of metal system components. Pitting is a concentration of corrosion in a small area of the total metal surface, effectively drilling a hole in the metal. Over time, DO can cause an oxygen tubercle, or scab, to form over the point of original attack. Once the scab forms, the corrosion will continue, even if the system is then properly maintained. The high temperatures and pressures in steam-generating systems accelerate the rate of corrosion. Improper water quality management results in not only ineffi ciency, but also costly repairs and downtime. Operators of high-pressure boilers try to eliminate DO entirely from feedwater.


Mechanical deaeration is commonly the fi rst and most economical technique employed by plant operators to remove DO. Deaeration equipment heats the feedwater and vents the released gases, including oxygen. Properly maintained deaerators can typically reduce DO levels to as low as 10 ppb (parts per billion).


Plant operators supplement mechanical deaeration with chemical treatment, using oxygen scavengers such as hydrazine, DEHA and carbohydrazide to consume remaining DO. Theoretically, maintaining a high residual of an oxygen scavenger would consume all dissolved oxygen. In reality, competing chemical reactions between oxygen and boiler surfaces are more likely to occur, resulting in signifi cant corrosion within the system.


Consequently, maintaining high scavenger levels may not provide adequate protection. Routine monitoring of DO levels is crucial to confi rm suffi cient removal of DO within the system.


Common Methods for Monitoring DO


Various kinds of dissolved oxygen monitoring equipment are commercially available. Probes and analysers with galvanic, polarographic, and optical sensors are often mounted permanently inline. Portable colorimetric test kits that are sensitive enough to measure low levels of dissolved oxygen are also routinely used in boiler applications. Plant engineers consider equipment performance, reliability, measurement frequency, and maintenance costs to determine the most suitable methods for monitoring DO in their systems.


Online analysers offer continuous DO measurement, but require routine calibration of the sensors. Calibration is typically based on measurements of water-saturated air, which can be accomplished by placing the probe in the air space above the water level in a closed container of water. Calibration frequency depends on vendor guidance, the type of sensor, and the water quality conditions to which the probe is exposed. With the use of either a sensor or an analyser, it is recommended that plant operators periodically compare online data to results obtained with an alternate test method, ensuring that equivalent results are obtained. This helps to identify calibration drift, sensor corrosion, or other factors that could compromise the validity of online results.


CHEMetrics is the only manufacturer of a portable test kit for detecting trace levels of dissolved oxygen in boiler applications. CHEMetrics®


Test Kits feature the convenience of “snap and read”


self-fi lling ampoules, offering plant operators a rapid, reliable, maintenance-free means of determining ppb levels of DO within one minute. Over the course of nearly 50 years, CHEMetrics has earned a reputation for providing quality DO test kits to this marketplace.


Test kits provide all the components necessary for analysis and do not require calibration by the operator. CHEMetrics ampoules


IET MARCH / APRIL 2022


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68