search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
39


Figure 5: Matrix matched calibration curves and chromatograms for standards at 0.001 mg/kg for peaks from: A. GC analysis of leptophos in celery and lemon, and B. LC analysis of carbofuran in corn and kale.


Figure 6: The percentage of pesticides detected in the 0.01 mg/kg standard for each matrix using both GC and LC.


The dwell time calculated for this compound using the autodwell function was 0.006 s. The resulting chromatogram of three replicate injections of 0.010 mg/kg of flutolanil in a celery matrix can be seen in Figure 3. Even with the fast scanning speed, 19 points were collected across the peak and the RSD of three consecutive injections in matrix was 5.2%. The same is true for the LC method used for this analysis.


Pesticides in Matrix


Matrix matched standards were prepared in celery, lemon, corn, and kale over a range of 0.001 to 0.050 mg/kg, and replicate injections made using the LC and GC methods. A TIC overlay for a selection of pesticides is shown in Figure 4, with 0.010 mg/kg in celery extract from both the A. APGC, and B. UHPLC analyses. The data were fitted with the best fit calibration: for the UHPLC data, the response was shown to be linear, whereas the APGC response over the range investigated was non-linear and so it was fitted with a quadratic calibration. A majority of the compounds in both analysis methods had correlation coefficient (R2


)


values of 0.995 or greater. Figure 5 shows the matrix matched calibration curves and the peak response at 0.001 mg/kg of a representative pesticide from each analysis method in the four matrices. Residuals from triplicate injections at each calibration point were within ±20%. Ion ratios were also shown to be within 30% tolerance of the reference values.


Figure 7: Percentage of compounds detected at 0.01 mg/kg in each matrix and associated RSDs.


For convenience, all sample extracts were spiked at the default MRL of 0.01 mg/kg. Figure 6 demonstrates the number of pesticides in each method detected in the spiked matrices at 0.01 mg/kg. However many pesticides could also be detected at 0.001 mg/kg as demonstrated in Figure 5 which shows leptophos (APGC compound) and carbofuran (UHPLC


compound) in the different matrices. The precision of the measurements was excellent with more than 90% of the detected pesticides exhibiting RSDs of peak area of <10% (n=3). The exception was the APGC analysis of the kale matrix, which had more than 80% of pesticides exhibiting RSDs of <10% (Figure 7).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68