33 Table 5: Limits of detection (LODs) and limits of quantitation (LOQs) for the mycotoxin analyser method.
semi-finished goods, by-products and finished products, additives and technical supplies, containers and packaging materials with the aim of standardisation, primarily in the brewing and malting industries. The analysis methods of MEBAK are available in several application books and include the determination of elements like copper, zinc, sodium, potassium, calcium and more, anions such as nitrate and sulphite as well as organic components such as ethanol, glycerin and others [10]. The determination of these trace metals in beer is required since they may be toxic in the human body in higher concentrations and have an influence on the brewing process. The elemental distribution differs significantly depending on the soil, water, cereal, hops, yeast and anthropogenic sources such as environmental pollution and agricultural treatment by fertilisers, pesticides and fungicides.
Last but not least, the metal content in beer may be influenced during production, processing, bottling and storage. During the brewing process, raw materials and processed products are often in contact with various materials such as stainless steel, copper, glass and other equipment for extended periods of time.
Determination of copper is important since high concentrations are disadvantageous to the colloidal stability and taste of the beer. The same applies to zinc, which is an essential trace element that influences the yeast metabolic processes such as protein synthesis and nucleic acid metabolism. Typical concentration levels of copper and zinc in beer are 0.2 mg/L [11].
Furthermore, the determination of arsenic, antimony, cadmium and lead is important, as these elements are toxic when present in beer or the brewing water. The source of these elements in beer and other alcoholic beverages can be attributed to the contamination of raw material and/or technological processes.
Figure 5: Calibration curves of 65Cu, 202Hg, 60Ni, 63Sb, 66Zn, 75As, 111Cd, 208Pb
chromium, iron, cobalt, copper, manganese, zinc and tin are in low concentrations essential to the human body, as they are important for the metabolism. At higher concentrations however, they are toxic and harmful to humans. Heavy metal poisoning may occur from contamination of drinking water from lead transfer pipes, air contamination from industrial emissions or ingestion via the food chain in the form of contaminated vegetables, meat and fish. Drinking water and wastewater are monitored continuously according to the European drinking water regulation and the law for indirect introduction of wastewaters.
Determination of heavy metals is done using Atomic Absorption-(AAS), Inductively Coupled Plasma Optical Emission-(ICP- OES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). ISO 17294-2:2016 specifies a method for the determination of 62
elements in drinking water, surface water, ground water, wastewater and eluates using an ICP-MS such as the Shimadzu ICPMS-2030.
Metal Elements in Beer
Next to drinking water, the most consumed and best controlled food on a global scale, beer is one of the world’s favourite bottled beverages. The annual per capita consumption is approx. 70 L in European countries. The quality standards for the analysis of beer are defined by the Central European Commission for Brewing Analysis (MEBAK) and the European Brewery Convention (EBC) which represents the technical and scientific interests of the brewing industries in European countries.
These regulations include the principles and methods for the analysis of raw materials,
Antimony and Arsenic in Water, Beer and Soft Drinks
Arsenic is released into beer from a filtering material called Kieselguhr or diatomaceous earth, used to remove yeast, hops and other particles and give the beer a crystal clear appearance. Diatomaceous earth consists of fossilised remains of diatoms, a type of hard- shelled algae that lived millions of years ago. It is widely used in beer and wine filtering and is an ingredient in other products [12].
Another element under scrutiny is antimony (Sb). Annual consumption of antimony trioxide in the United States and Europe is approximately 10,000 tons and 25,000 tons respectively. The main uses are as a flame retardant synergist in combination with halogenated materials and as a catalyst in the production process for polyethylene terephthalate (PET) bottles. Elevated concentrations of Sb have been found in beverages such as cola drinks and orange
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68