34 May / June 2017 Table 6: ICPMS-2030 measurement parameters
the highest level of protection of human health.
Modern hyphenated analytical techniques such as chromatography (LC-MS), spectroscopy and mass spectrometry can determine these contaminants in complex food matrices with high sensitivity at ultra-low concentration levels in order to keep the food and beverage chain safe.
References
1. Elfering & Schierhorn: Harvard business review (2016)
Table 7: Distribution of 6 elements in beer
2. Commission Regulation (EC). 2005. No 396/2005 of the European Parliament and of the Council, maximum residue levels of pesticides in or on food and feed of plant and animal origin. Official Journal of the European Union, L 70: 1-16
3. US Environmental Protection Agency, Electronic code of federal regulation: Title 40: Part 180 - tolerances and exemptions for pesticide chemical residues in food. http://
www.ecfr.gov/cgi-bin/text-idx?c=ecfr&tpl=/ ecfrbrowse/Title40/
40cfr180_main_02.tpl
juices which are stored in PET bottles, as the Sb migrates from the plastic to the liquid and accumulates in the drinks. The migration process is accelerated in alcoholic beverages. Vodka samples from glass and PET bottles have been compared according to their Sb-levels where it was found that the Sb concentration in vodka from a PET bottle can be up to 20 µg/L compared to less than 1 µg/L in a glass bottle [13].
The maximum allowable concentration of Sb in drinking water is 5 µg/L. Since the latest development in the beer industry is the introduction of 0.33 L, 0.5L and 1 L PET bottles on supermarket shelves with a variety of beers from European countries, analytical investigations are in process of evaluating antimony concentrations in beer also.
High Sensitivity ICP-MS
For the simultaneous quantitative determination of inorganic elements in beer, ICP-MS is the preferred quality control tool. ICP-MS offers high sensitivity (trace detection), a wide dynamic range and high sample throughput. Even though beer is regarded as a difficult matrix due to the high number of constituents, the Shimadzu ICPMS-2030 octopole collision cell assures high accuracy for all element measurements. Using helium as a collision gas and running in Kinetic Energy Discrimination (KED) mode, this cell suppresses most of the spectroscopic interferences (polyatomic interferences). Efficiency of interference suppression and sensitivity are improved using a cooled cyclonic chamber and well-controlled torch positioning.
Preparation of Beer Samples and ICP-MS Setup
For this study, samples of two commercially available beers were evaluated. The two beer samples analysed were undiluted and aspirated after degassing using the measurement parameters listed in Table 6. An internal standard solution containing 71 115In and 205
internal standard addition kit.
Concentrations of Ni, Cd, Sb and Pb in the undiluted beer were determined using a calibration curve method. For each element studied, calibration curves were generated using 4 standards in the concentration range from 2 to 10 µg/L. The standards were prepared using a matrix-matched solution containing 5% ethanol.
The calibration curves in Figure 5 show that all correlation coefficients were better than 0.999, and low levels of detection limits (LD) were achieved. They were calculated automatically by LabSolution-ICPMS software with 3σ method. The data listed in Table 7 demonstrates that ICPMS-2030 is an ideal tool for trace contaminant analysis in beer.
Conclusion
Contaminants like pesticide residues, mycotoxins and heavy metals may occur in our food from a variety of different sources. These are in the focus of European food and safety authorities, and are controlled by national and international regulations. Analysis of relevant chemical contaminants is therefore an essential part of the food safety policy of the European Commission to ensure
4. Japanese Ministry of Health, Labour and Welfare, Department of Food Safety. 2006. Director Notice about Analytical Methods for Residual Compositional Substances of Agricultural Chemicals, Feed Additives, and Veterinary Drugs in Food (Syoku-An No. 0124001 January 24, 2005; amendments May 26, 2006).
5.
https://echa.europa.eu/-/glyphosate-not- classified-as-a-carcinogen-by-echa.
Ga, Tl was added using the automatic
6. Analysis of Gufosinat, Glyphosate and AMPA in Drinking Water Using a Triple Quadrupole LC/MS/MS System. Application News Shimadzu. 2015. No. C120
7. Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM). Quick Method for the Analysis of numerous Highly Polar Pesticides in Foods of Plant Origin via LC-MS/MS involving Simultaneous Extraction with Methanol (QuPPe-Method). 2015. Version 8.1
http://www.crl-pesticides.eu/ library/docs/srm/meth_QuPPe.pdf
8. European Pesticide database: http://
ec.europa.eu/food/plant/pesticides/eu- pesticides-database/public/?event=pesticide.
residue.CurrentMRL&language=DE
9. EU: Commission Regulation (EC) No 1881/2006 of 19 December 2006 (consolidated version 2010-07-01). Setting maximum levels for certain contaminants in foodstuffs.
10. Pfenninger, H.: Brautechnische Analysenmethoden (1996)
11. Hough, J.S. et al.: Malting and brewing science (1982)
12. Coelhan, M. et al.: Am. Chem. Soc., News, Widely used filtering material adds arsenic to beers (2013)
13. Oppermann, U., Schram, J. GIT Verlag, Wiley- Blackwell, p. 102-103 (2011)
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68