This page contains a Flash digital edition of a book.
Journal of Paleontology, 91(3), 2017, p. 444–466 Copyright © 2017, The Paleontological Society 0022-3360/15/0088-0906 doi: 10.1017/jpa.2016.154


Chemosymbiotic bivalves from Miocene methane-seep carbonates in Italy


Steffen Kiel,1 and Marco Taviani2,3,4 1Swedish Museum of Natural History, Department of Palaeobiology, Box 500 07 104 05 Stockholm, Sweden ⟨steffen.kiel@nrm.se⟩ 2Institute of Marine Sciences, Italian National Research Council, Via Gobetti 101, 40129 Bologna, Italy 3Biology Department, Woods Hole Oceanographic Institution, 266Woods Hole Rd,Woods Hole,MA 02543, USA ⟨marco.taviani@bo.ismar.cnr.it⟩ 4Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy


Abstract.—Eleven species of chemosymbiotic bivalves are reported from middle to late Miocene methane seep deposits (‘Calcari a Lucina’) in the Italian Apennines, including seven new species and one new genus. The new species are Bathymodiolus (s.l.) moroniae and B.(s.l.) miomediterraneus among the Bathymodiolinae and Archivesica aharoni, A. apenninica, A. strigarum,and ‘Pliocardia’ italica among the Vesicomyidae; specimens from the middle Miocene of Deruta are reported as Archivesica aff. aharoni. Samiolus iohannesbaptistae new genus new species is introduced for an unusual mytilid with a commarginally ribbed surface, which might be the first non-bathymodiolin mytilid obligate to the seep environment. The two large lucinid species from which these deposits derived their informal name ‘Calcari a Lucina’ are identified as Meganodontia hoernea (Des Moulins, 1868) and Lucinoma perusina (Sacco, 1901). With Chanellaxinus sp., we report the first thyasirid from a Neogene deep-water seep deposit in Italy and the first fossil occurrence of this genus.


Introduction


Limestone deposits yielding large lucinid bivalves have been known for centuries from the Miocene deposits in Italy, and were termed ‘Calcari a Lucina’ (Manzoni, 1876; Coppi, 1877; Scarabelli, 1880; Sacco, 1901; Di Stefano, 1903). Due to their isolated occurrence in deep-water sediments and the large bivalves preserved in them, they were considered to have been transported from shallow water (Ricci Lucchi and Veggiani, 1967). This view changed after the first discovery of faunal communities at methane seeps in the deep Gulf of Mexico with similarly large bivalves (Paull et al., 1984) and the recognition that methane seep carbonates can be identified based on their distinctive, light carbon isotope signature (Hovland et al., 1987). The ‘Calcari a Lucina’ deposits throughout Italy are nowconsidered as ancient deep-water methane seep deposits (Clari et al., 1988; Conti et al., 1993; Terzi, 1993;Aharon and SenGupta, 1994; Berti et al., 1994; RicciLucchi and Vai, 1994; Taviani, 1994; Terzi et al., 1994; Peckmann et al., 1999; Clari et al., 2004b; Conti et al., 2004, 2010). Despite this wealth of geologic literature on these deposits, modern studies on the macrofauna are relatively rare (Moroni, 1966; Taviani, 1994, 2011, 2014; Taviani et al., 2011). The purpose of the present contribution is to provide a revision of the major taxa of chemosymbiotic bivalves of the ‘Calcari a Lucina’ deposits, with exclusion of solemyids.


Materials and methods


Specimenswere coatedwith ammoniumchloride for photography. The material is from twelve seep deposits of middle to late Miocene age (Fig. 1) associated with deep-water hemipelagic marls or turbidites, mostly ascribed to the Marnoso-arenacea


Formation. Their geological and stratigraphic context is described in various publications (Vai et al., 1997; Conti and Fontana, 1999; Clari et al., 2004b; Taviani, 2011). A short description of the localities is provided in the Appendix.


Repositories and institutional abbreviations.—MGGC: Museo Geologico Giovanni Capellini, University of Bologna; MSF: Museo Civico di Scienze Naturali, Faenza; MZB: Museo dell’Evoluzione (formerly Zoologia), University of Bologna; MRSN: Museo Regionale di Scienze Naturali, Torino (managing the Bellardi and Sacco collection, property of the Turin University).


Systematic paleontology Class Bivalvia Linnaeus, 1758


Subclass Pteriomorphia Beurlen, 1944 Order Mytilida Férussac, 1822 Family Mytilidae Rafinesque, 1815


Genus Bathymodiolus Kenk and Wilson, 1985


Type species.—Bathymodiolus thermophilus Kenk and Wilson, 1985, Recent, Galapagos Rift Zone, by original designation.


Remarks.—Molecular phylogenetic studies have shown that species currently classified as Bathymodiolus belong to at least two clades within the bathymodiolins (Gustafson et al., 1998; Jones et al., 2006; Lorion et al., 2010, 2013; Thubaut et al., 2013), of which those related to B. childressi may be placed in a separate genus. This species group is often referred to as the ‘childressi clade’ and it is recommended to use “Bathymodiolus” only in quotationmarks for these species until the taxonomic uncertainties


444


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216