This page contains a Flash digital edition of a book.
Shi et al.—Silicified Paleoproterozoic microbiota from China


are both very small and simple. Recently, Agić et al. (2015) emended Dictyosphaera as a monospecific genus, so we assign the new specimens to D. macroreticulata.


Genus Asperatopsophosphaera Shepeleva, 1963


Type species.—Asperatopsophosphaera bavlensis Shepeleva, 1963.


Asperatopsophosphaera umishanensis Xingand Liu, 1973 Figure 10.6–10.9


1973 Asperatopsophosphaera umishanensis Xing and Liu, p. 21, pl. 2, figs. 2, 3.


Holotype.—Specimen 4-7/1858(3), illustrated by Xing and Liu (1973, pl. 2, fig. 2).


Description.—Spherical cells with a granular surface and a dense wall. Cells are 26.7–55.4 μm in diameter (mean = 35.5 μm; N = 15). Some possess uneven outlines (Fig. 10.7).


Remarks.—Granular ornamentation on microfossils from the late Paleoproterozoic were considered taphonomic signatures (Peng et al., 2007; Peng et al., 2009). On this basis, the existence of the taxon A. umishanensis became debatable. According to some previously reported materials and new specimens in the Dahongyu Formation, granular-surfaced and dense-walled A. umishanensis emerged from the Dahongyu Formation, and became more abundant upwards in the Jixian Group (Xing and Liu, 1973; Sun, 2006). Granular ornamentation on their surface is clear and uniform, which is different from cracks and foldings resulting from biological decay or diagenesis (Zhang and Liu, 1991). For these reasons, we assign these specimens to A. umishanensis.


Genus Leioarachnitum Andreeva et al., 1966 Type species.—Leioarachnitum vittatum Andreeva et al., 1966.


Leioarachnitum sp. indet. Figure 11.1–11.5


Description.—Solitary and fusiform units with a medial split that is parallel to the long axis direction. Walls are dense and opaque. Both ends taper and are rounded or blunt. Cells are 8–53 μm long (mean = 31 μm; N = 23) and 4–27 μm wide (mean = 15 μm; N = 23). Length is 2–3 times greater than the width. Some of their medial splits are open, but others are not.


Remarks.—Leioarachnitum sp. has been reported as “boat- shaped microfossils” from cherts of the Gaoyuzhuang Forma- tion, Jixian section (Cao, 2005, p. 547). The emergence of some specimens of Leioarachnitum sp. without rupture (Fig. 11.4, 11.5) in the new microbiota may demonstrate their features before excystment. Therefore, Leioarachnitum sp. is probably a different microorganism from those roll-ups of half envelope in Chuanlinggou Formation (Peng et al., 2009). Medial split- bearing “Schizofusa” from the Changcheng Group has the same fusiform characteristic, but also reveals that they are rolled up


389


“half envelopes” (Yan, 1982, 1985; Yan and Liu, 1993; Peng et al., 2009). Unlike the “Schizofusa” specimens, Leioar- achnitum sp. from the Dahongyu Formation is a whole envel- ope, which is in accord with the original description of “Schizofusa” (Yan, 1982). Their medial splits have been inter- preted as excystment structures of eukaryotic algae (Lamb et al., 2009), which seems reasonable for the Leioarachnitum sp. described here.


Unnamed Form 1 Figure 11.8


Description.—Spherical cell with a broken, neck-like extension. Cells sizes 76–80 μm in diameter (N = 3). Their walls are transparent and smooth-surfaced.


Discussion.—Extensions with different morphology have been observed on Tappania, which is the characteristic microfossil in coeval strata. Detailed morphology of these specimens, espe- cially the neck-like extensions, is needed before comparing to Tappania.


Unnamed Form 2 Figure 11.9


Description.—Cells are spheroidal, occurring in pairs within a common organic wall. The outer wall is coarsely granulated. The cell pair is 25 μm in width and 41 μm in length (N = 1).


Discussion.—Cell pairs from the Bitter Spring Formation have been named Eozygion and then interpreted as a synonym of the Gloeodiniopsis (Schopf and Blacic, 1971; Knoll and Golubic, 1979). The Dahongyu specimens are different from the Bitter Spring specimens because of their granulated surface.


Unnamed Form 3 Figure 11.10


Description.—Cells are spheroidal, occurring in pairs without a common envelope. The larger cell of the pair is 33 μm in length and 30 μm in width. The smaller cell is 17 μm in length and 22 μm in width (N = 1). The outer surface is smooth.


Unnamed Form 4 Figure 11.11


Description.—Dividing cells without any common envelope. Cells are lentiform in morphology, and are connected to each other by their elongated wall in the direction of the long axis. Cells have smooth and transparent outer surfaces. Cells vary from 39.5–49 μmin length and range from 29 to 32 μminwidth (N = 1). Two cells are conjoined by their elongated outer wall.


Unnamed Form 5 Figure 11.12


Description.—Solitary spherical microfossils with a single spine-like structure on its surface. Cells vary in diameter from 30–34 μm(N = 2). Cell wall is non-transparent and smooth- surfaced. The cell wall is approximately 2 μm in thickness.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216