This page contains a Flash digital edition of a book.
440


Journal of Paleontology 91(3):434–443


Table 1. Measurements (in mm) of Costinuculana magharensis n. gen. n. sp. from the Middle Bathonian of Gebel Maghara, Sinai. Abbreviations given in Figure 3.


Specimen


BSPG2014 V 1 (holotype) BSPG2014 VI3a BSPG2014 VI4a BSPG2014 VI4c BSPG2014 VI2 BSPG2014 VI3b Range Mean


L 16


10.5–17.3 14.13


17.3 10.5 15.5 14.2 11.3


H


7.8 7


5.2 6.5 7


5.2–7.8 6.45


5.2 I


3.1–6.1 4.48


6.1 5.2 3.1 4.7 4.3 3.5


D


4.1–6.5 5.5


6.4 6.5 4.3 6.2 5.5 4.1


H/L 0.49


I/L


0.40–0.49 0.46


0.40 0.49 0.42 0.49 0.46


0.29–0.38 0.31


0.38 0.30 0.29 0.30 0.30 0.31


D/L 0.4


0.36–0.41 0.39


0.38 0.41 0.40 0.39 0.36


N. ribs 12


13 8


8–15 11


15 10 8


Figure 6. Hinge of the right valve of Costinuculana magharensis n. gen. n. sp. from the middle to upper Bathonian Kehailia Formation of Gebel Maghara; BSPG2014V I5c.


the sediment-water interface. Because the posterior end of the shell presumably remained above the sediment-water interface, the thick posterior-most oblique ribs probably had another function. Most likely, they strengthened the thin and elongated rostrum against durophagous predators such as ammonites. The inflated valves with their broadly convex anterior margin in addition helped the bivalve to maintain a stable position within the soft substrate and to keep the posterior end above the sediment-water interface.


Paleosynecological remarks


Based on the cluster analysis of Abdelhady and Fürsich (2014, p. 179, fig. 3), Costinuculana magharensis n. gen. n. sp. is a member of their Nicaniella (N.) pisiformis association. This association is found mostly in fine-grained sediments (mainly marly silt and marl) of the middle to upper Bathonian Kehailia Formation of Gebel Maghara. The dominant organisms of this association are bivalves (75.4%), whereas gastropods, brachio- pods, corals, and echinoids are subordinate. According to Abdelhady and Fürsich (2014), the trophic nucleus consists of 12 species and is dominated by small, shallow-burrowing Nicaniella (N.) pisiformis J. de C. Sowerby (31.5%; Fig. 7.3), Nuculoma variabilis (J. de C. Sowerby) (10.9%), and Ryderia decorata (Douvillé) (8.3%). Shallow-infaunal organisms represent 67.8% of the total benthic fauna followed by epifaunal ones 28.2% (Fig. 7.1). With respect to the feeding habits, suspension-feeders dominate (54.2%), followed by deposit- feeders (28.1%), omnivores (12.7%), and microcarnivores (4.9%).


The fine-grained sediment and the abundance of shallow- infaunal organisms and deep-burrowing bivalves (altogether


67.8%) indicate that the Nicaniella (N.) pisiformis association occupied a soft substrate. Due to the activities of mobile taxa (40.7%; Abdelhady and Fürsich, 2014), the softness of substrate probably increased and thus became less attractive for epifaunal organisms. The Nicaniella (N.) pisiformis association reflects low-energy conditions, in which physical breakage was insignificant. All specimens of Costinuculana n. gen. except one are articulated, which implies a relatively low degree of reworking. According to the high percentage of suspension- feeders (54.2%), water energy must have been sufficient enough to keep nutrients in suspension. Moreover, the high diversity both in terms of evenness and species richness and the presence of stenohaline groups, such as ammonites and echinoids, indicate normal-marine, fully oxygenated low-stress conditions. For more details about the paleo-community see Abdelhady (2014, p. 170) and Abdelhady and Fürsich (2014, p. 179–184).


Conclusions


(1) The bivalve Costinuculana magharensis n. gen. n. sp. (Nuculanida, Nuculanidae) is described from the middle to upper Bathonian Kehailia Formation of Gebel Maghara, North Sinai, Egypt.


(2) The main morphological feature that distinguishes Costi- nuculana n. gen. from other nuculanid genera is the irregular opisthocline ribs on the rostrum, which cover an area ~45% of the total valve length from the posterior end. Other diagnostic features are the morphology of the escutcheon and lunule.


(3) Costinuculana magharensis n. gen. n. sp. differs from related species by its small size and its well-developed irregular opisthocline ribs on the rostrum, moderately inflated valves, narrow, lanceolate, and sharply demarcated lunule, and wide and deep escutcheon with well-developed riblets.


(4) The conspicuous oblique ribs in C. magharensis n. sp. probably helped the bivalve to maintain a stable position in the soft substrate. The oblique and bifurcated ribs increased the friction between the valves and sediment. In addition, these ribs probably reinforced the thin, elongated rostrum against durophagous predators (e.g., ammonites).


(5) Paleosynecologically, the Nicaniella (N.) pisiformis asso- ciation and the fine-grained substrate reflect low-energy conditions. The species diversity and evenness of the association indicate a stable environment suitable for the colonization by several guilds.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216