This page contains a Flash digital edition of a book.
Journal of Paleontology, 91(3), 2017, p. 369–392 Copyright © 2017, The Paleontological Society 0022-3360/15/0088-0906 doi: 10.1017/jpa.2016.163


Silicified microbiota from the Paleoproterozoic Dahongyu Formation, Tianjin, China


Min Shi,1 Qing-Lai Feng,1 Maliha Zareen Khan,1 Stanley Awramik,2 and Shi-Xing Zhu3


1StateKey Laboratory ofGeological Processes and MineralResources,China University of Geosciences,Wuhan, 430074, China ⟨shimin@cug.edu.cn⟩, ⟨qinglaifeng@cug.edu.cn⟩, ⟨mallu786@hotmail.com⟩ 2Department of Earth Sciences, Preston Cloud Research Laboratory, University of California, Santa Barbara, CA 93106, United States


⟨awramik@geol.ucsb.edu⟩ 3State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences,Wuhan, 430074, China ⟨1404063125@qq.com⟩


were identified in open nomenclature. One new taxon of microfossil was described: Xiaohongyuia sinica Shi and Feng new genus new species.


Introduction


The so-called “boring billion” (~1.8–0.8 Ga) was characterized by environmental stability and its conditions are thought to have delayed eukaryotic diversification (Holland, 2006; Planavsky et al., 2014). Tectonically, this period was far from boring, since it involved the activity of the Columbia and Rodinia super- continent (Zhang et al., 2012). Moreover, the evolution of Earth’s biosphere, atmosphere, and hydrosphere is thought to tie with the continental movements (Campbell and Allen, 2008; Santosh, 2010; Young, 2013). Correspondingly, recent studies have revealed that obvious chemical and geological changes occurred during the “boring billion” (Guo et al., 2012). Javaux et al. (2013) proposed that the “boring billion” was actually an “exciting time” for early eukaryotes, but direct taxonomic evi- dence is not very common in the early “boring billion” (Knoll et al., 2006; Butterfield, 2007). Based on the study of micro- fossils from ca. 1600 Ma strata, Yin (1985) proposed that an obvious morphological differentiation had occurred. However, subject to photographic limitations, demonstrating character- istics of morphological differentiation are blurred. In order to portray the biological community during this critical era, the unmetamorphosed and classic Jixian section was selected for a systematic study of microfossils from the Dahongyu Formation. This involved the preparation of 914 thin sections of chert


Abstract.—Cherts and silicified dolostones of the ca. 1600 Ma Dahongyu Formation (uppermost Changcheng Group) from North China contain well-preserved microfossils. Cyanobacteria filaments and coccoids dominate the studied Dahongyu microbiota in the Jixian section. These microfossils show the characteristics of endobenthic, epibenthic, and allochthonous microfossils, which illustrated well a vertical distributional view of an intertidal microbiota. Large num- bers and size of allochthonous microfossils are the distinguishing characteristics of this new microbiota. A few of these possess ornaments or odd morphology, which suggest their potential eukaryotic nature. Through regional comparisons, it is revealed that there was significant regional disparity within the Yanshan Basin of microbiotas during deposition of the Dahongyu Formation. The newly studied Dahongyu microbiota is similar to the microbiota from the underlying Changcheng Group, with only slight differences. The absence of typical eukaryotes and the emergence of unique micro- fossils (especially small fusiform microfossils) make the Dahongyu Formation and the subsequent strata of the Jixian Group distinct from contemporaneous eukaryote-bearing strata. In the Dahongyu assemblage, 19 species were recognized, six species were identified informally and seven species


samples for examination. Consequently, a large number of microfossils were recovered.


Geological setting, stratigraphy, and age


The Yanshan Basin in North China is one of the rift basins that formed during the break-up of the Columbia supercontinent (Lu et al., 2002, 2004; Zhang et al., 2012). Unmetamorphosed successions of Proterozoic sedimentary rocks are widely exposed in this basin. The studied Jixian section is located in the middle of the Yanshan Basin (Fig. 1) and exceeds 10,000m in thickness. In ascending order, it has been divided into the Changcheng, Jixian, Huailai, and Qingbaikou groups, with ages ranging from 1670 to 850Myr (Li et al., 2011) (Fig. 2). In the lower part of the Changcheng Group, clastic rocks are dominant. Carbonates initially emerged in the upper part of the Chang- cheng Group and dominated the sediments in the Jixian Group. Clastic rocks appeared again in the upper part of the Jixian section, dominating the Huailai Group and the Qingbaikou Group.


The Dahongyu Formation was the last sedimentary


formation of the Changcheng Group. During Dahongyu deposition, wide-spread and long-standing volcanic activities occurred (Ren, 1987). Volcanic materials and terrestrial deposits are ubiquitous in the Yanshan Basin and exhibit obvious


369

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216