This page contains a Flash digital edition of a book.
398


Journal of Paleontology 91(3):393–406


an unnamed form of paired tests here referred to as “doublets.” Two of the five taxa, Cycliocyrillium simplex and C. torquata, were originally described by Porter et al. (2003), and the other three are here assigned to new genera and species: Paleoam- phora urucumense n. gen. n. sp., Limeta lageniformis n. gen. n. sp., and Taruma rata n. gen. n. sp.


Vase-shaped Microfossils Genus Cycliocyrillium Porter, Meisterfeld, and Knoll, 2003


Type species.—Cycliocyrillium simplex Porter et al., 2003. Other species.—Cycliocyrillium torquata Porter et al., 2003.


Diagnosis.—Bulbous to pyriform VSMs having a circular aperture either flush with the test or associated with a narrow collar or short uncurved neck, not exceeding one-tenth the total length of the specimen; angle between the apertural plane and the aboral axis ~90°.


Figure 5. Optical, CLSM, Raman images, and a Raman spectrum of thin section-embedded VSMs from dolostone clasts in diamictite of the Neoproterozoic Urucum Formation (Jacadigo Group, Corumbá, Brazil). (1) Optical image of organic test of Cycliocyrillium simplex Porter, Meisterfeld, and Knoll, 2003 (GP/5T-2537 A); (2) Raman spectrum of test shown in (1), indicating the principal bands of the embedding dolomite and quartz and the “D,”“G,” and second-order carbonaceous kerogen bands of its test; (3–5) optical (3) and CLSM images (4, 5)of Palaeoamphora urucumense n. gen. n. sp. that exhibits a constricted short neck subtending its aperture (GP/5T-2537 B); (6–8) optical image (6) and corresponding Raman images (7, 8) of a test attributed to C. simplex (GP/5T-2537 C) showing a close association between kerogen (7) and silica (8).


preserved as well, despite the post-depositional recrystallization and dolomitization that has alteredmuch of the primary rock fabric. We conclude that the very early isopachous carbonate cement was fundamental in preserving the walls of the Urucum VSMs (Figs. 4, 5, 6). Attempts were unsuccessful to identify the source of the


VSM-bearing clasts among carbonate intraclasts present in the continental debris flow-dominated alluvial fan facies of the Urucum Formation (Freitas et al., 2011), all such intraclasts proving to be nonfossiliferous and calcitic rather than dolomitic. Indeed, the isopachous cement encasing the VSMs documented here is much more characteristically marine (Tucker and Wright, 1990) than continental. Such a marine origin for the Urucum VSMs is also consistent with the paleoenvironment inferred for practically all other occurrences of VSMs (e.g., Porter and Knoll, 2000). Available evidence thus indicates that the VSM-bearing clasts should be regarded as extraclasts of unknown provenance apparently derived from pre-Urucum marine rocks.


Systematic paleontology


Of the approximately 3,000 specimens of VSMs detected in clasts from the Urucum Formation, 55 specimens having long- itudinal sections oriented parallel to the thin section surface were examined in detail and differentiated into five species and


Description.—Specimens from the Urucum Formation have pyriform tests (L = 50–139 µm, x = 87 µm, σ = 20 µm; W = 42–96 µm, x = 62 µm, σ = 14 µm), and exhibit a circular aperture (aperture diameter, AD = 11–22 µm, x = 22 µm, σ = 6 µm) without a collar or neck. Aspect ratios (L/W) range


Remarks.—As originally described by Porter et al. (2003, p. 415), the presence of an uncurved neck is a diagnostic feature for the genus Cycliocyrillium, but the neck is absent in the type species C. simplex. Therefore, we have emended the generic and specific diagnoses to allow for the lack of a neck or collar in the genus and to differentiate clearly between C. simplex, which has no collar or neck, and C. torquata, which does. The dimensions of the specimens of Cycliocyrillium in the


Urucum Formation are similar to those of the type material presented by Porter et al. (2003) from the Neoproterozoic Chuar Group. Unlike the type material, which is preserved as molds, siliceous casts, and carbonate substitutions, the specimens described here exhibit walls of varied composition. Nearly all are carbonaceous (kerogenous) (Figs. 4.1, 6.1), which we interpret as indicating an originally organic wall. A few are siliceous (Fig. 6.2, 6.3) or a carbonaceous-siliceous mixture (Fig. 4.6–4.8). Their possible origins are discussed in the next section.


Cycliocyrillium simplex Porter, Meisterfeld, and Knoll, 2003 Figures 5.1, 5.6, 6.1


2003 Cycliocyrillium simplex Porter et al., p. 415, fig. 6.1–6.9.


Holotype.—HUPC# 64455, upper Tonian (~742±6 Ma), Kwagunt Formation, Chuar Group, Arizona.


Materials.—N = 24; GP/5T: 2529 B, C, D, E, I; 2531 A, B, D, E; 2532 B, H; 2534 A, C, E; 2535 A; 2536 F, I, L; GP/5T: 2539 B, C, E, F; 2541 A, C.


Diagnosis.—Specimens of Cycliocyrillium with smooth aper- tural margin flush with the rest of the test.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216