search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Journal Highlights


Techniques


Automated Tools to Advance High-Resolution Imaging in Liquid by GM Jonaid, MA Casasanta, WJ Dearnaley, S Berry, L Kaylor, MJ Dressel-Dukes, MS Spilman, JL Gray, and DF Kelly, Microsc Microanal | https://doi.org/10.1017/S1431927621013921. Liquid-electron microscopy (Liquid-EM) is an exciting


area in the materials imaging field providing unprecedented views of molecular processes. Time-resolved insights from Liquid-EM studies are a strong complement to the remarkable results achievable with other imaging techniques. Here, we describe opportunities to expand Liquid-EM technology by enhancing current practices with automated tools. Our results describe high-resolution structures of human viruses and individual proteins in liquid droplets by improving procedures for specimen preparation, data collection procedures, and computational processes. To develop these strategies, we used biological specimens relevant for drug delivery and the treatment of COVID-19. We also provide the first view of therapeutic protein candidates live in solution (Figure). Improving our understanding of the physical properties of macromolecules in a liquid state, as maintained in the human body, has broad societal implications for human health and disease. Major findings from this work entail insights for visualizing biological materials as well as quantifiable measures to assess their physical changes.


High-resolution structure of AAV determined from particles in solution. Slices through the AAV assembly with the atomic model (blue; pdb code, 3KIC, all chains) placed in the EM map (gray). A magnified region near the 5-fold axis shows some side chains present and distinct within the density. Scale bar = 5 nm.


A top journal in Microscopy


Published for the Microscopy Society of America Editor: John Mansfield, University of Michigan, USA


The only journal owned by scientists and published for scientists, Microscopy and Microanalysis provides original research papers in the fields of microscopy, imaging and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science.


Online submission at cambridge.org/mam/submit View the journal online at cambridge.org/mam Microscopy Society of America 2022 May • www.microscopy-today.com 57


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72