search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Unraveling Molecular Dynamics


Acknowledgements We would like to thank Carmen M. Domínguez and


Christof M. Niemeyer (KIT, Karlsruhe, Germany) for provid- ing the DON samples used in Figure 2.


References [1] B Drake et al., Science 243 (1989) https://doi.org/10.1126/ science.2928794.


[2] H-J Butt et al., J Microsc 169 (1993) https://doi .org/10.1111/j.1365-2818.1993.tb03280.x.


[3] MB Viani et al., Nat Struct Biol 7 (2000) https://doi .org/10.1038/77936.


[4] T Ando et al., Proc Natl Acad Sci 98 (2001) https://doi .org/10.1073/pnas.211400898.


[5] DR Stamov et al., Microscopy Today 23 (2015) https://doi .org/10.1017/S1551929515001005.


Figure 5: High-speed AFM imaging of an A5 P6 honeycomb lattice, with cen- tral non-P6 positions occupied by mobile A5 trimers (top left). A 3D view of a “2IE7” A5 PDB trimer (from www.rcsb.org) with a global C3 symmetry (top right) is given for comparison only. Outlined inset is shown in the bottom panel at tem- poral resolution of 833 ms, identifying several preferred orientations of the rota- tional A5 dynamics. XYZ-scales in top left and bottom panels are 100×100×1.5 nm3


and 32×32×1.5 nm3 respectively.


in combination with the high temporal resolution, here can be applied as a molecular fingerprinting tool for studying collagen type I mutations in lab diagnostics. The high-speed AFM imaging of mobile A5 trimers


within the stationary P6 lattice indicate that preferred structural orientations at 60° can be studied (Figure 5), but realistically the rotational dynamics of the process is at least a few orders of magnitude faster than the high-speed AFM imaging rates. As suggested previously [24], further studies of A5 rotation kinetics would require the application of single line, or even point scanning, to boost the temporal resolution.


Conclusion Tis article describes the application of high-speed AFM


for studying several biological systems with acquisition rates of up to 50 frames/sec. With no requirement for sample pro- cessing, high-speed AFM enables measurements of samples at their near-native state. With acquisition line rates of up to 5 kHz, the high-speed AFM used here offers a 3-fold boost in temporal resolution compared to conventional AFM. In turn, this enables the real-time studies of dynamic and molecular interactions such as single molecule binding dynamics, track- ing of protein-protein and protein-DNA interactions, DNA rehybridization dynamics, monitoring of enzyme kinetics, lipid remodeling in multi-component membranes, etc. Cur- rent studies are underway to demonstrate how high-speed force spectroscopy applications, including nanomechanical mapping of single molecules, membrane segregation, and novel unfolding pathways of biomolecules in health and dis- ease would additionally complement our knowledge of the molecular dynamics in both life science and material science applications.


14


[6] Bruker Nano Surfaces, Microsc Anal (2019) https://analyti- calscience.wiley.com/do/10.1002/micro.2927/.


[7] T Ando, Nanotechnology 23 (2012) https://doi .org/ 10.1088/0957-4484/23/6/062001.


[8] T Ando et al., Chem Rev 114 (2014) https://doi.org/10.1021/ cr4003837.


[9] MW Amrein and D Stamov, Atomic Force Microscopy in the Life Sciences (2019) Springer International Publishing. https://doi.org/10.1007/978-3-030-00069-1_31.


[10] CE Lyman, Microscopy Today 29 (2021) https://doi .org/10.1017/S1551929521001085.


[11] CM Domínguez et al., manuscript in preparation. [12] A Angelin et al., Angewandte Chem Intl Ed 54 (2015) https://doi.org/10.1002/anie.201509772.


[13] H Takahashi et al., Small 12 (2016) https://doi.org/10.1002/ smll.201601549.


[14] C Fleck et al., Biophys J 82 (2002) https://doi.org/10.1016/ S0006-3495(02)75375-7.


[15] M Manghi and N Destainville, Phys Rep 631 (2016) https:// doi.org/10.1016/j.physrep.2016.04.001.


[16] DR Stamov et al., Ultramicroscopy 149 (2015) https://doi .org/10.1016/j.ultramic.2014.10.003.


[17] A Bouter et al., Nat Commun 270 (2011) https://doi .org/10.1038/ncomms1270.


[18] JW Gauer et al., Biophys .org/10.1016/j.bpj.2013.03.060.


[19] Y Hu et al., Angewandte Chem Intl Ed 59 (2020) https://doi .org/10.1002/anie.202008471.


[20] P Lanzerstorfer et al., Biomolecules 10 (2020) https://doi .org/10.3390/biom10040540.


[21] J-H Jeon et al., Phys Rev Lett 105 (2010) https://doi .org/10.1103/PhysRevLett.105.208101.


[22] S Perumal et al., Proc Natl Acad Sci 105 (2008) https://doi .org/10.1073/pnas.0710588105.


[23] JPRO Orgel et al., PLoS ONE 9 (2014) https://doi .org/10.1371/journal.pone.0089519.


[24] GR Heath and S Scheuring, Nat Commun 9 (2018) https:// doi.org/10.1038/s41467-018-07512-3.


www.microscopy-today.com • 2022 May J 104 (2013) https://doi


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72