search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Ice Contamination


Conclusion Te current low sample yield means a lot of precious time


and samples are wasted. It also means it takes longer for users to generate sufficient high-quality data to arrive at an answer to their biological question. Since cryo-ET has the potential to accelerate our understanding of diseases and the development of drug treatments, resolving the ice contamination issues can create a very positive impact on biomedical advances. Further- more, not only does the current low cryo-ET sample yield lead to significant amounts of waste, the public funds used for biomedi- cal research are spent ineffectively. Te impact on healthcare, the environment, and society points toward the need for a drastic reduction in ice contamination during the cryo-ET workflow. Te recent technological improvements [10,11] and new


commercially available solutions, for example, Delmic CERES Clean Station, Vitri-Lock and Ice Shield, Delmic METEOR, and TFS iFLM (summarized in Table 1) address some of the ice con- tamination issues in the cryo-ET workflow. Tere are, of course, still areas in the workflow where improvement is needed, for example, effective sample vitrification. When the major bottle- necks in the cryo-ET workflow are overcome, the true potential of cryo-ET for biomedical research and drug development will undoubtedly be revealed.


Acknowledgements Te Ice Contamination Survey work was supported by Eurostars grant number E13008 - CETFlow.


References [1] M Grange et al., J Struct Biol 197 (2017) https://doi .org/10.1016/j.jsb.2016.06.024.


[2] M Chen et al., Nature Meth 16 (2019) https://doi .org/10.1038/s41592-019-0591-8.


[3] D Wrapp et al., Science 367 (2020) https://doi.org/10.1126/ science.abb2507.


[4] G Wolff et al., Science 369 (2020) https://doi.org/10.1126/ science.abd3629.


[5] L Mendonça et al., Nature Commun Biol 4 (2021) https:// doi.org/10.1038/s42003-021-01999-1.


[6] SE Siegmund et al., iScience 6 (2018) https://doi .org/10.1016/j.isci.2018.07.014.


[7] SD Carter et al., Science Adv 6 (2020) https://doi .org/10.1126/sciadv.aay9572.


[8] Z Wang et al., Cell 184 (2021) https://doi.org/10.1016/ j.cell.2021.02.047.


[9] Y Cao et al., Cell 182 (2020) https://doi.org/10.1016/ j.cell.2020.05.025.


[10] S Tacke et al., J Struct Biol 213 (2021) https://doi .org/10.1016/j.jsb.2021.107743.


[11] S Gorelick et al., eLife 8 (2019) https://doi.org/10.7554/ eLife.45919.


[12] M Smeets et al., Microscopy Today 29 (2021) https://doi .org/10.1017/S1551929521001280.


2022 May • www.microscopy-today.com


35


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72