search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Biological Applications


Te Fractal and GLCM Textural Parameters of Chromatin May Be Potential Biomarkers of Papillary Tyroid Carcinoma in Hashimoto’s Tyroiditis Specimens by M Dinčić, J Todorović, J Nešović Ostojić, S Kovačević, D Dunđerović, S Lopičić, S Spasić, S Radojević-Škodrić, D Stanisavljević, and AŽ Ilić, Microsc Microanal | doi:10.1017/S1431927620001683


papillary thyroid carcinoma (PTC) is sometimes hindered due to sharing of


Accurate diagnosis of Hashimoto’s thyroiditis (HT) and similar nuclear features. Quantification of


the


differences between HT-associated PTC (HT/PTC) versus HT alone specimens can facilitate diagnosis and reduce inaccurate diagnosis due to the subjective experience of an observer. We analyzed 250 segmented nuclei per group (25 nuclei per patient, 10 patients per group) using ImageJ soſtware (NIH, Bethesda, MD, USA) for fractal analysis and an in-house written code for the gray-level co-occurrence matrix (GLCM) analysis (Figure). Malignant cells from the HT/PTC specimens showed lower chromatin fractal dimension (p=0.0321) and higher lacunarity (p=0.0038) compared to corresponding cells from the HT alone specimens. Additionally, we observed statistically significant differences for the five studied GLCM features: Contrast, Correlation, Angular second moment, Homogeneity, and Entropy. Te differences in visual textures of follicular cell chromatin could be used for improved evaluation of distinctive features of HT/ PTC versus HT in cytology and surgical pathology specimens.


Techniques Development


Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part II: Post Acquisition Data Processing, Visualisation, and Structural Characterisation by GW Paterson, RWH Webster, A Ross, KA Paton, TA Macgregor, D McGrouther, I MacLaren, and M Nord, Microsc Microanal | doi:10.1017/S1431927620024307


New generations of radiation hard fast pixelated detectors


incorporating direct electron technologies are revolutionizing aspects of scanning transmission electron microscopy (STEM). Tis has led to the burgeoning field of four-dimensional STEM (4D-STEM), where a slice of reciprocal space is recorded in high dynamic range and with low or zero readout noise at each probe position. Tis allows a multitude of analyses to be performed, with the potential of yielding greatly improved insights into a range of samples. We report two open source Python soſtware libraries (fpd and PixStem) to enable the efficient processing and visualization of 4D-STEM data, and cover aspects of their use in performing STEM characterization of the structural properties of materials. Examples are given of virtual detector imaging, higher order Laue zone analysis, nanobeam electron diffraction, and scanning precession electron diffraction (Figure). In the latter, we demonstrate excellent nanoscale lattice parameter mapping with a precision ≤ 0.06%. Extensive documentation is provided online, and all data and scripts used in the article are publicly available.


66 doi:10.1017/S1551929520001273


Nine parameters obtained using fractal and GLCM textural analysis showed significant differences in the visual textures of chromatin in HT/PTC versus the HT alone specimens.


Processing steps of the lattice parameter extraction from 4D-STEM data from an MgO substrate acquired in SPED mode.


www.microscopy-today.com • 2020 September


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80