TECHNICAL
Their success was immediate. They were cheap, effective in small quantities, easy to apply, and widely toxic. They seemed to be truly ‘miracle insecticides’
”
switched from coffee to tea production; and the invasion from the Americas of an insect, the grape phylloxera, (Viteus vitifoliae), which almost destroyed the wine industry in France (1848-1878). Not surprisingly, over this period there was a surge of interest in developing pest-control techniques and, by the turn of the 19th century, there were five main approaches to the control of pests which were well established and in common use: (i) biological control; (ii) chemical control (inorganic chemicals, especially sulphur and copper compounds, or plant-derived alkaloids, especially nicotine); (iii) mechanical and physical control (e.g. tree-banding with sticky substances); (iv) cultural and sanitation controls (like crop rotation); and (v) the use of resistant varieties. The first forty years of the 20th century was a period of steady progress in pest control, in which all of these five approaches played an important part. Pest control was revolutionised, however (especially insect pest control), by the Second World War. Driven by the need to control insect vectors of human disease in the tropics, hundreds of manufactured chemicals were screened for insecticidal properties. In the USA, the breakthrough came with dichlorodiphenyltrichloroethane (DDT), manufactured in Switzerland, followed by other chlorinated hydrocarbons. In Germany, another equally toxic group of compounds was developed, the
organophosphates, whilst a third group of synthetic organic insecticides, the carbamates, was also discovered in the 1940s, by Swiss workers. The initial targets of the organic insecticides were the vectors of human disease, but after the war there was a rapid expansion into agriculture. ‘Their success was immediate. They were cheap, effective in small quantities, easy to apply, and widely toxic. They seemed
to be truly ‘miracle insecticides’ (Flint and van den Bosch, 1981). During the 1930s and 1940s too, the first organic selective herbicides were being developed, originally as a result of work on chemicals to regulate plant growth: 2-methyl-4- chlorophenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4- D) and 4,6 dinitro-o-cresol (DNOC). The immediate impact was on cereal crops and, to a much lesser extent, on peas and grassland. An expansion into a much wider range occurred from the 1960s onwards (Lockhart et al. 1990).
The period from 1946 onwards has been described as the ‘Age of Pesticides’, divided by Metcalf (1980) into three phases: the Era of Optimism (1946-1962), the Era of Doubt (1962-1976) and the Era of Integrated Pest Management (IPM) (1976-). Whilst it would be easy to quibble with Metcalf’s dating and terminology, this division captures the changes in the scientific climate over this period. In the heady days of the 1940s and the early 1950s, it was widely believed that generous doses of simple organics could entirely eradicate pests and the problems they caused.
Doubts that had been voiced by entomologists Strickland (1945) and Wiggleworth (1945) were decades ahead of the publication of Rachel Carson’s Silent Spring in 1962, which challenged the notion that chemicals brought benefits but negligible risks. These doubts grew steadily until the XVth International Congress of Entomology in 1976 firmly rejected the widespread use of broad- spectrum and persistent pesticides in favour of an IPM approach.
The problems with chemical pesticides
Widespread toxicity
Chemical pesticides are generally intended for particular pests at a particular site, nevertheless, problems arise because they are
Figure 1. Displaying a timeline, drawn to scale, showing the history of the use of pesticides
128 PC February/March 2019
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148