Integrating ion mobility spectrometry into MS-based exposome measurements Perspective
lipids by traveling wave ion mobility-mass spectrometry. Anal. Chem. 88(14), 7329–7336 (2016).
83 Suhr H. Plasma chromatography. In: Berichte der Bunsengesellschaft für physikalische Chemie, Carr TW (Ed.). Plenum Press, NY, USA, 924 (1984).
84 Mason EA, Mcdaniel EW. Transport Properties of Ions in Gases. John Wiley and Sons, NY, USA, 35 (1988).
85 Revercomb HE, Mason EA. Theory of plasma chromatography gaseous electrophoresis – review. Anal. Chem. 47(7), 970–983 (1975).
86 Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr. Ion mobility-mass spectrometry. J. Mass Spectrom. 43(1), 1– 22 (2008).
87 May JC, Mclean JA. Ion mobility-mass spectrometry: time- dispersive instrumentation. Anal. Chem. 87(3), 1422–1436 (2015).
•• Provides an overview of the historical developments in ion mobility spectrometry (IMS) and reviews basic concepts and characteristics of IMS (e.g., resolving power), and gives details on different types of IMS approaches.
88 Williams JP, Bugarcic T, Habtemariam A et al. Isomer separation and gas-phase configurations of organoruthenium anticancer complexes: ion mobility mass spectrometry and modeling. J. Am. Soc. Mass Spectrom. 20(6), 1119–1122 (2009).
89 Wu C, Siems WF, Klasmeier J, Hill HH. Separation of isomeric peptides using electrospray ionization/high- resolution ion mobility spectrometry. Anal. Chem. 72(2), 391–395 (2000).
90 Kyle JE, Zhang X, Weitz KK et al. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141(5), 1649–1659 (2016).
91 Zheng X, Zhang X, Schocker N et al. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry Anal. Bioanal. Chem. doi:10.1007/s00216-016-9866-4 (2016) (Epub ahead of print).
92 Stephan S, Hippler J, Kohler T, Deeb AA, Schmidt TC, Schmitz OJ. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+LC-IM-qTOF-MS using a CCS database. Anal. Bioanal. Chem. 408(24), 6545–6555 (2016).
•• The first comprehensive application of collisional cross section (CCS), as measured using IMS, in contaminant monitoring in wastewaters. The authors show the power of using an in-house library of 500 experimentally determined CCS values from analysis of authentic standards.
93 Fjeldsted J, Kurulugama RT, Mordehai A et al. Highly accurate collision cross section measurements for comprehensive high throughput applications. Presented at: 64th Annual Meeting of the American Society for Mass Spectrometry. San Antonio, TX, USA, June 5–9, 2016.
94 Causon TJ, Mairinger T, Hung LS et al. Addition of drift-tube ion mobility to liquid chromatography-mass spectrometry workflows: examining the potential for cellular metabolomics. Presented at: 12th Annual Conference of the
Metabolomics Society. Dublin, Ireland, June 27–30, 2016.
95 Wyttenbach T, Bowers MT. Gas-phase conformations: the ion mobility/ion chromatography method. Mod. Mass Spectrom. 225, 207–232 (2003).
96 Baker ES, Clowers BH, Li F et al. Ion mobility spectrometry- mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18(7), 1176–1187 (2007).
97 Liu X, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE. Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom. 18(7), 1249–1264 (2007).
98 Baker ES, Livesay EA, Orton DJ et al. An LC-IMS-MS platform providing increased dynamic range for high- throughput proteomic studies. J. Proteome Res. 9(2), 997–1006 (2010).
99 Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE. Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70(11), 2236–2242 (1998).
100 Baker ES, Zhang X, Burnum-Johnson KE et al. Enhancing ion mobility-mass spectrometry metabolomic analyses with high throughput front end separations. Presented at: The Pittsburgh Conference and Exposition. Atlanta, GA, USA, March 6–10, 2016.
101 Baker ES, Zhang X, Zheng X et al. Automated solid phase extractions coupled with ion mobility-mass spectrometry analyses allow rapid metabolomic screening of complex plasma and urine samples. Presented at: 64th Annual Meeting of the American Mass Spectrometry Society. San Antonio, TX, USA, June 5–9, 2016.
102 Kangas LJ, Metz TO, Isaac G et al. In silico identification software (ISIS): a machine learning approach to tandem mass spectral identification of lipids. Bioinformatics 28(13), 1705–1713 (2012).
103 Bauer CA, Grimme S. First principles calculation of electron ionization mass spectra for selected organic drug molecules. Org. Biomol. Chem. 12(43), 8737–8744 (2014).
104 Heller S, Mcnaught A, Stein S, Tchekhovskoi D, Pletnev I. InChI – the worldwide chemical structure identifier standard. J. Cheminform. 5(1), 7 (2013).
105 O’boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).
106 Halgren TA. Merck molecular force field. 1. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17(5–6), 490–519 (1996).
107 Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 17 (2012).
108 Valiev M, Bylaska EJ, Govind N et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181(9), 1477–1489 (2010).
109 Hehre WJ, Ditchfie R, Pople JA. Self-consistent molecular- orbital methods. 12. Further extensions of gaussian-type
future science group
www.future-science.com
44
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58