search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Perspective Metz, Baker, Schymanski et al.


52 Park YH, Lee K, Soltow QA et al. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. Toxicology 295(1–3), 47–55 (2012).


53 Schymanski EL, Singer HP, Longree P et al. Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ. Sci. Technol. 48(3), 1811–1818 (2014).


54 Schymanski EL, Singer HP, Slobodnik J et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem. 407(21), 6237–6255 (2015).


•• Provides a ‘status quo’ of nontarget contaminant screening in Europe, and also provide perspectives for the future of environmental monitoring. Included are an overview of target, suspect and nontarget screening of data, a review of studies where these approaches were employed and a summary of the results of an interlab comparison of methods.


55


Ibanez M, Sancho JV, Mcmillan D, Rao R, Hernandez F. Rapid non-target screening of organic pollutants in water by ultraperformance liquid chromatography coupled to time-of-light mass spectrometry. Trends Analyt. Chem. 27(5), 481–489 (2008).


56 Hug C, Ulrich N, Schulze T, Brack W, Krauss M. Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ. Pollut. 184, 25–32 (2014).


57 Chiaia-Hernandez AC, Schymanski EL, Kumar P, Singer HP, Hollender J. Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Anal. Bioanal. Chem. 406(28), 7323–7335 (2014).


58 Larive CK, Barding GA Jr, Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Anal. Chem. 87(1), 133–146 (2014).


59 Dettmer K, Aronov PA, Hammock BD. Mass spectrometry- based metabolomics. Mass Spectrom. Rev. 26(1), 51–78 (2007).


60 Nagana Gowda GA, Gowda YN, Raftery D. Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Anal. Chem. 87(1), 706–715 (2014).


61 Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78(13), 4430–4442 (2006).


62 Kopka J, Schauer N, Krueger S et al. GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21(8), 1635–1638 (2005).


63 Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Analyt. Chem. 78, 23–35 (2016).


64 Hufsky F, Scheubert K, Bocker S. Computational mass spectrometry for small-molecule fragmentation. Trends Analyt. Chem. 53, 41–48 (2014).


65 Vaniya A, Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt. Chem. 69, 52–61 (2015).


66 Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminform. 8, 3 (2016).


67 Sumner LW, Amberg A, Barrett D et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3(3), 211–221 (2007).


68 Wishart DS, Jewison T, Guo AC et al. HMDB 3.0--The Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801–D807 (2013).


69 Singer HP, Wossner AE, Mcardell CS, Fenner K. Rapid screening for exposure to “non-target” pharmaceuticals from wastewater effluents by combining HRMS-based suspect screening and exposure modeling. Environ. Sci. Technol. 50(13), 6698–6707 (2016).


70 Moschet C, Piazzoli A, Singer H, Hollender J. Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography- high resolution mass spectrometry. Anal. Chem. 85(21), 10312–10320 (2013).


71 NORMAN Suspect List Exchange. www.norman-network. com/?q=node/236


72 Schymanski EL, Jeon J, Gulde R et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48(4), 2097–2098 (2014).


73 Suhr H. Plasma Chromatography. Plenum Press, NY, USA (1984).


74 Michelmann K, Silveira JA, Ridgeway ME, Park MA. Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26(1), 14–24 (2015).


75 Ewing MA, Conant CRP, Zucker SM, Griffith KJ, Clemmer DE. Selected overtone mobility spectrometry. Anal. Chem. 87(10), 5132–5138 (2015).


76 Zucker SM, Ewing MA, Clemmer DE. Gridless overtone mobility spectrometry. Anal. Chem. 85(21), 10174–10179 (2013).


77 Rus J, Moro D, Sillero JA et al. IMS–MS studies based on coupling a differential mobility analyzer (DMA) to commercial API–MS systems. Int. J. Mass Spectrom. 298(1–3), 30–40 (2010).


78 Brown LJ, Creaser CS. Field asymmetric waveform ion mobility spectrometry analysis of proteins and peptides: a review. Curr. Anal. Chem. 9(2), 192–198 (2013).


79 Guevremont R. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J. Chromatogr. 1058(1–2), 3–19 (2004).


80 Kolakowski BM, Mester Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132(9), 842–864 (2007).


81 Vidal-De-Miguel G, Macía M, Cuevas J. Transversal modulation ion mobility spectrometry (TM-IMS), a new mobility filter overcoming turbulence related limitations. Anal. Chem. 84(18), 7831–7837 (2012).


82 Hines KM, May JC, Mclean JA, Xu L. Evaluation of collision cross section calibrants for structural analysis of


43


Bioanalysis (2017) Bioanalysis (2017) 9(1), 81–98(1)


future science group


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58