search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Integrating ion mobility spectrometry into MS-based exposome measurements Perspective


metabolite mass spectral database. Ther. Drug Monit. 27(6), 747–751 (2005).


21 Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78(13), 4430–4442 (2006).


22 Kind T, Wohlgemuth G, Lee DY et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81(24), 10038–10048 (2009).


23 Kind T, Liu KH, Lee Do Y, Defelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10(8), 755–758 (2013).


24 Bocker S, Rasche F. Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24(16), i49–i55 (2008).


25 Brouard C, Shen H, Duhrkop K, D’alche-Buc F, Bocker S, Rousu J. Fast metabolite identification with Input Output Kernel Regression. Bioinformatics 32(12), i28–i36 (2016).


26 Duhrkop K, Shen H, Meusel M, Rousu J, Bocker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl Acad. Sci. USA 112(41), 12580–12585 (2015).


27 Jeffryes JG, Colastani RL, Elbadawi-Sidhu M et al. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J. Cheminform. 7, 44 (2015).


28 Horai H, Arita M, Kanaya S et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45(7), 703–714 (2010).


29 Wolf S, Schmidt S, Muller-Hannemann M, Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010).


30 Gerlich M, Neumann S. MetFusion: integration of compound identification strategies. J. Mass Spectrom. 48(3), 291–298 (2013).


31 Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM- ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 42, W94–W99 (2014).


32 Eng JK, Mccormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5(11), 976–989 (1994).


33 Craig R, Beavis RC. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun. Mass Spectrom. 17(20), 2310–2316 (2003).


34 Kim S, Gupta N, Pevzner PA. Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J. Proteome Res. 7(8), 3354–3363 (2008).


35 Altman DG, Bland JM. Diagnostic tests. 1: sensitivity and specificity. BMJ 308(6943), 1552 (1994).


36 Cortejade A, Kiss A, Cren C, Vulliet E, Bulete A. Development of an analytical method for the targeted screening and multi-residue quantification of environmental contaminants in urine by liquid chromatography coupled to high resolution mass spectrometry for evaluation of human exposures. Talanta 146, 694–706 (2016).


37 Davie-Martin CL, Hageman KJ, Chin YP, Nistor BJ, Hung H. Concentrations, gas-particle distributions, and sourceindicator analysis of brominated flame retardantsin air at Toolik Lake, Arctic Alaska. Environmental Science. Processes & Impacts 18, 1274–1284 (2016).


38 Gonzalez A, Avivar J, Cerda V. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid–liquid microextraction prior silylation and gas chromatography. J. Chromatogr. A 1413, 1–8 (2015).


39 Carroll JJ, Smith N, Babson AL. A colorimetric serum glucose determination using hexokinase and glucose-6- phosphate dehydrogenase. Biochem. Med. 4(2), 171–180 (1970).


40 Rossini AA, Like AA, Chick WL, Appel MC, Cahill GF Jr. Studies of streptozotocin-induced insulitis and diabetes. Proc. Natl Acad. Sci. USA 74(6), 2485– 2489 (1977).


41 Vavra JJ, Deboer C, Dietz A, Hanka LJ, Sokolski WT. Streptozotocin, a new antibacterial antibiotic. Antibiot. Annu. 7, 230–235 (1959).


42 Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA 286(16), 1945–1948 (2001).


43 O’connell SG, Haigh T, Wilson G, Anderson KA. An analytical investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 405(27), 8885–8896 (2013).


44 Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. The blood exposome and its role in discovering causes of disease. Environ. Health Perspect. 122(8), 769–774 (2014).


45 Dennis KK, Marder E, Balshaw DM et al. Biomonitoring in the era of the exposome. Environ. Health Perspect. doi:10.1289/EHP474 (2016) (Epub ahead of print).


46 Ellis JK, Athersuch TJ, Thomas LD et al. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Med. 10, 61 (2012).


47 Go YM, Walker DI, Liang Y et al. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicol. Sci. 148(2), 531–543 (2015).


48 Southam AD, Lange A, Al-Salhi R, Hill EM, Tyler CR, Viant MR. Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by direct-infusion mass spectrometry based metabolomics and lipidomics. Metabolomics 10(6), 1050–1058 (2014).


49 Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC- FTMS) for study of the exposome. Metabolomics 9(Suppl. 1), S132–S143 (2013).


50 Johnson JM, Yu T, Strobel FH, Jones DP. A practical approach to detect unique metabolic patterns for personalized medicine. Analyst 135(11), 2864–2870 (2010).


51 Yao Y, Wang P, Shao G, Anzalota Del Toro LV, Codero J, Giese RW. Nontargeted analysis of the urine nonpolar sulfateome: a pathway to the nonpolar xenobiotic exposome. Rapid Commun. Mass Spectrom. 30(21), 2341–2350 (2016).


future science group


www.future-science.com


42


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58