search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
manufacturing technology


be performed. A set number of parts could be drilled in a day; in addition, if one machine broke down, the entire line shut down. There was no advantage in developing cutting or drilling tooling that hastened operations because the line was only able to run at its designated speed. This antiquated approach to automobile manufacturing continued throughout the 1970s and 1980s but slowly began to change in the 1990s, with the rise of computer numerical control (CNC) machines. Today’s modern automobile manufacturers are now using fl exible CNC equipment; if parts can go faster on one machine, they can be sped along to the next one, perhaps gain- ing an advantage that ultimately translates into higher revenue.


satisfactory fi nish at low cost and without wearing out tool- ing. With the removal of lead in metals and the replacement of cast iron with compacted graphite iron (CGI), the metals used in the automotive industry have gone from machine friendly to extremely diffi cult to machine. This means that tooling must be adjusted to increase chip


control to gain tool life and make the hole straighter. Other related industry changes that affect hole-drilling tooling are the environmental laws limiting the use of chlorine and sulfur in hole drilling coolant systems. (The scope of this problem is different in Europe, which requires dry-machining, in which no coolant, or very little, is used, because elimination of waste coolant is prohibited by pollution laws.) The elimination of chlorine and sulfur has resulted in an increase in problems with chip build up on the cutting tool, chip sticking, and reduced tool life. The end result is that tooling manufac-


turers have to fi nd innovative ways to deal with these trends. Tooling manufacturers have had to innovate to improve their tools’ performance. Some companies are moving towards near-net forging to avoid these issues, but the problems will continue, since parts will always differ from forger to forger.


Steel alloy transmission shafts can pose signifi cant dr lling challenges


With these new CNC-operated transfer lines, manufactur- ers can be more fl exible, making changes and taking advan- tage of any new tooling that comes out. They can incorporate tooling innovations that help them increase production and make more money. Those in the tooling industry are therefore always looking for new and innovative tools that can speed up the slowest part—the one that is holding back other op- erations—to yield signifi cant overall cost savings.


Industry Trends Affecting Metalcutting One major factor affecting metalcutting in the last 20–30 years is the long-term elimination of free machine metals, those that can be cut easily, allowing material removal with a


Steel alloy transmission shafts can pose signifi cant driilling challenges.


Innovative Tools In response to these automobile manu- facturing, economic, and environmental/ regulatory trends, the market is looking for innovations in turning and drilling—both


machines and tooling. In effect, this innovation is what makes money for an automotive manufacturer. For example, new turning and drilling machines are com- ing on the market with high-speed tool changing and more accurate HSK (hollow taper shank) tool spindles. But there are also many opportunities to design tooling that make up for defi ciencies on older machines. Placing 21st tooling on 20th


century century machines can signifi cantly improve


manufacturing effi ciency and increase profi tability, making older machines perform like brand-new ones. Improving an existing capital asset can be a huge advantage, since capital requests for major new equipment purchases can be diffi cult to fund. With the fl exibility of new CNC machines, new tooling


62 — Motorized Vehicle Manufacturing 2017


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176